• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Morphology, Crystallization and Melting Behavior of Statistical Copolymers of Propylene with Ethylene, 1-Butene, 1-Hexene and 1-Octene

Kumar, Amit 20 June 2001 (has links)
In this thesis, the morphology, crystallization and melting behavior of polypropylene copolymers (propylene/ethylene, propylene/1-butene, propylene/1-hexene and propylene/1-octene) has been examined. The multiple melting behavior has been correlated with the presence of alpha and gamma phases and with the occurrence of cross-hatching morphology. The Crystallization and melting behavior of propylene/ethylene and propylne/1-butene are qualitatively similar and compatible with the expectations that the ethylene and butene comonomers are partly included in the propylene lattice. Propylene/1-hexene and propylene/1-octene copolymers exhibit remarkably similar behavior and morphologies consistent with the expectations that the hexene and the octene comonomers are rigorously excluded from the crystal lattice. The origin and the crystallization time dependence of the multiple melting behavior is very different for these two pairs of copolymers. For PE and PB it is consistent with the melting of parent a-phase lamellae and alpha or gamma-phase daughter lamellae. For PH and PO copolymers it is very similar to that observed for ethylene-octene(EO) and ethylene-styrene(ES) copolymers and compatible with the melting of primary lamellae and secondary mosaic or fringed micellar structures. / Master of Science
2

Missing Links the role of phase synchronous gamma oscillations in normal cognition and their dysfunction in schizophrenia

Haig, Albert Roland January 2002 (has links)
SUMMARY Introduction: There has recently been a great deal of interest in the role of synchronous high-frequency gamma oscillations in brain function. This interest has been motivated by an increasing body of evidence, that oscillations which are synchronous in phase across separated neuronal populations, may represent an important mechanism by which the brain binds or integrates spatially distributed processing activity which is related to the same object. Many models of schizophrenia suggest an impairment in the integration of brain processing, such as a loosening of associations, disconnection, defective multiple constraint organization, or cognitive dysmetria. This has led to recent speculation that abnormalities of high-frequency gamma synchronization may reflect a core dimension of the disturbance underlying this disorder. However, examination of the phase synchronization of gamma oscillations in patients with schizophrenia has never been previously undertaken. Method: In this thesis a new method of analysis of gamma synchrony was introduced, which enables the phase relationships of oscillations in a specific frequency band to be examined across multiple scalp sites as a function of time. This enabled, for the first time, the phase synchronization of gamma oscillations across widespread regions, to be studied in electrical brain activity measured at the scalp in humans. Gamma synchrony responses were studied in electroencephalographic (EEG) data acquired during a commonly employed conventional auditory oddball paradigm. The research consisted of two sets of experiments. In the first set of experiments, data from 100 normal subjects, consisting of 10 males and 10 females in each age decade from 20 to 70, was examined. These experiments were designed to characterize the gamma synchonizations that occurred in response to target and background stimuli and their functional significance in normal brain activity, and to exclude the possibility of these findings being due to electromyogram (EMG) or volume conduction artifact. The examination of functional significance involved the development of an additional new analysis technique. In the second set of experiments, data acquired from 35 patients with schizophrenia and 35 matched normal controls was analyzed. The purpose of these experiments was to determine whether patients showed disturbances of gamma synchrony compared to controls, and to establish the relationship of any such disturbances to medication levels, symptom profiles, duration of illness, and a range of psychophysiological variables. Results: In the 100 normals, responses to target stimuli were characterized by two bursts of synchronous gamma oscillations, an early (evoked) and a late (induced) synchronization, with different topographic distributions. Only the early gamma synchronization was seen in response to background stimuli. The main variable modulating the magnitude of these gamma synchronizations from epoch to epoch was pre-stimulus EEG theta (3-7 Hz) and delta (1-3 Hz) power. Early and late gamma synchrony were also associated with N1 and P3 ERP component amplitude across epochs. Across subjects, the early gamma synchronization was associated with shorter latency of the ERP components P2, N2 and P3, smaller amplitude of N1 and P2, and smaller pre-stimulus beta power. The control analyses showed that these gamma responses were specific to a narrow frequency range (37 to 41 Hz), and were not present in adjacent frequency bands. The responses were not generated by EMG contamination or volume conduction. In the 35 patients with schizophrenia, significant abnormalities of both the early and late synchronizations were observed compared to the 35 normal controls, with distinctive topographic characteristics. In general, early gamma synchrony was increased in patients compared to controls, and late gamma synchrony was decreased. These gamma synchrony disturbances were not related to medication level or the four summed symptom profile scores (positive, negative, general and total). They were, however, associated with duration of illness, becoming less severe the longer the patient had suffered from the disorder. The disordered gamma synchrony in patients was not secondary to abnormalities in other psychophysiological variables, but appeared to represent a primary disturbance. Discussion: The early synchronization may relate to the binding of object representations in early sensory processing, or, given that a constant inter-stimulus interval was employed, may be anticipatory and related to active memory. The late response is probably involved in binding in relation to activation of the internal contextual model involved in late expectancy/contextual processing (context updating or context closure) for target stimuli. The across epochs effects may relate to whether the focus of attention immediately prior to stimulus presentation is internal or is directed at the task. The across subjects effects suggest that a larger magnitude of the early gamma synchronization might indicate that the subject maintains a more stable and less ambiguous internal representation of the environment, that reduces the complexity of input and facilitates target/background discrimination and subsequent processing. The early gamma synchronization findings in patients with schizophrenia suggest that anticipatory processing involving active memory and forward-prediction of the environment is subject to over-binding or the formation of inappropriate associations. The late synchronization disturbances may reflect a fragmentation of contextual processing, and an inability to maintain contextual models of the environment intact over time. Conclusion: This research demonstrates the potential importance of integrative network activity as indexed by gamma phase synchrony in relation to normal cognition, and the possible broad relevance of such activity in psychiatric disorders. In particular, the application in this study to patients with schizophrenia showed that an impairment of brain integrative activity (missing links) might be a key feature of this illness.
3

Atomic Diffusion in the Uranium-50wt% Zirconium Nuclear Fuel System

Eichel, Daniel 16 December 2013 (has links)
Atomic diffusion phenomena were examined in a metal-alloy nuclear fuel system composed of δ-phase U-50wt%Zr fuel in contact with either Zr-10wt%Gd or Zr-10wt%Er. Each alloy was fabricated from elemental feed material via melt-casting, and diffusion samples of nominal 1.5 mm thickness were prepared from the resulting alloy slugs. The samples were assembled into diffusion couples and annealed for periods of 14, 28, and 56 days at temperatures of 550°C, 600°C, and 650°C. Thus, the U-50Zr/Zr-10Er system and the U-50Zr/Zr-10Gd system were each annealed for three different time periods at each of three different temperatures, for an initial total of 18 diffusion interfaces that were to be studied. In practice, data was collected from only 12 of the 18 interfaces. At 650°C, the U-50wt%Zr alloy exists in the γ-phase region, which enabled the comparison of diffusion behavior between the δ phase and γ phase. Diffusion samples were examined by collecting composition profiles across the diffusion interface for each element via electron probe microanalysis. From the resulting experimental data diffusion coefficients were evaluated. Diffusion coefficients were found to be on the order of 10^-19 m2/s in the δ-phase systems, and 10^-17 m^2/s in the γ-phase systems. It was observed that atomic mobility of all diffusing species was generally greater in the U-50Zr/Zr-10Gd system than in the U-50Zr/Zr-10Er system; furthermore, it was found that diffusion rates were considerably higher above the phase transformation temperature into the γ phase, as indeed would be expected in the more open structure of the body-centered cubic γ phase, as compared to the hexagonal δ-phase U-Zr. However, values for diffusion coefficients measured in this study were considerably smaller than those found in past studies of δ-phase U-Zr, which are on the order of 10^-17 m^2/s. It is likely that diffusion was inhibited by the formation of stable metal oxides resulting from oxygen contamination; it is also possible that diffusion was suppressed by the presence of the erbium and gadolinium.
4

Missing Links the role of phase synchronous gamma oscillations in normal cognition and their dysfunction in schizophrenia

Haig, Albert Roland January 2002 (has links)
SUMMARY Introduction: There has recently been a great deal of interest in the role of synchronous high-frequency gamma oscillations in brain function. This interest has been motivated by an increasing body of evidence, that oscillations which are synchronous in phase across separated neuronal populations, may represent an important mechanism by which the brain binds or integrates spatially distributed processing activity which is related to the same object. Many models of schizophrenia suggest an impairment in the integration of brain processing, such as a loosening of associations, disconnection, defective multiple constraint organization, or cognitive dysmetria. This has led to recent speculation that abnormalities of high-frequency gamma synchronization may reflect a core dimension of the disturbance underlying this disorder. However, examination of the phase synchronization of gamma oscillations in patients with schizophrenia has never been previously undertaken. Method: In this thesis a new method of analysis of gamma synchrony was introduced, which enables the phase relationships of oscillations in a specific frequency band to be examined across multiple scalp sites as a function of time. This enabled, for the first time, the phase synchronization of gamma oscillations across widespread regions, to be studied in electrical brain activity measured at the scalp in humans. Gamma synchrony responses were studied in electroencephalographic (EEG) data acquired during a commonly employed conventional auditory oddball paradigm. The research consisted of two sets of experiments. In the first set of experiments, data from 100 normal subjects, consisting of 10 males and 10 females in each age decade from 20 to 70, was examined. These experiments were designed to characterize the gamma synchonizations that occurred in response to target and background stimuli and their functional significance in normal brain activity, and to exclude the possibility of these findings being due to electromyogram (EMG) or volume conduction artifact. The examination of functional significance involved the development of an additional new analysis technique. In the second set of experiments, data acquired from 35 patients with schizophrenia and 35 matched normal controls was analyzed. The purpose of these experiments was to determine whether patients showed disturbances of gamma synchrony compared to controls, and to establish the relationship of any such disturbances to medication levels, symptom profiles, duration of illness, and a range of psychophysiological variables. Results: In the 100 normals, responses to target stimuli were characterized by two bursts of synchronous gamma oscillations, an early (evoked) and a late (induced) synchronization, with different topographic distributions. Only the early gamma synchronization was seen in response to background stimuli. The main variable modulating the magnitude of these gamma synchronizations from epoch to epoch was pre-stimulus EEG theta (3-7 Hz) and delta (1-3 Hz) power. Early and late gamma synchrony were also associated with N1 and P3 ERP component amplitude across epochs. Across subjects, the early gamma synchronization was associated with shorter latency of the ERP components P2, N2 and P3, smaller amplitude of N1 and P2, and smaller pre-stimulus beta power. The control analyses showed that these gamma responses were specific to a narrow frequency range (37 to 41 Hz), and were not present in adjacent frequency bands. The responses were not generated by EMG contamination or volume conduction. In the 35 patients with schizophrenia, significant abnormalities of both the early and late synchronizations were observed compared to the 35 normal controls, with distinctive topographic characteristics. In general, early gamma synchrony was increased in patients compared to controls, and late gamma synchrony was decreased. These gamma synchrony disturbances were not related to medication level or the four summed symptom profile scores (positive, negative, general and total). They were, however, associated with duration of illness, becoming less severe the longer the patient had suffered from the disorder. The disordered gamma synchrony in patients was not secondary to abnormalities in other psychophysiological variables, but appeared to represent a primary disturbance. Discussion: The early synchronization may relate to the binding of object representations in early sensory processing, or, given that a constant inter-stimulus interval was employed, may be anticipatory and related to active memory. The late response is probably involved in binding in relation to activation of the internal contextual model involved in late expectancy/contextual processing (context updating or context closure) for target stimuli. The across epochs effects may relate to whether the focus of attention immediately prior to stimulus presentation is internal or is directed at the task. The across subjects effects suggest that a larger magnitude of the early gamma synchronization might indicate that the subject maintains a more stable and less ambiguous internal representation of the environment, that reduces the complexity of input and facilitates target/background discrimination and subsequent processing. The early gamma synchronization findings in patients with schizophrenia suggest that anticipatory processing involving active memory and forward-prediction of the environment is subject to over-binding or the formation of inappropriate associations. The late synchronization disturbances may reflect a fragmentation of contextual processing, and an inability to maintain contextual models of the environment intact over time. Conclusion: This research demonstrates the potential importance of integrative network activity as indexed by gamma phase synchrony in relation to normal cognition, and the possible broad relevance of such activity in psychiatric disorders. In particular, the application in this study to patients with schizophrenia showed that an impairment of brain integrative activity (missing links) might be a key feature of this illness.
5

The Lattice Parameter of Gamma Iron and Iron-Chromium Alloys

Feng, Zhiyao 03 June 2015 (has links)
No description available.
6

Förster Resonance Energy Transfer Mediated White-Light-Emitting Rhodamine Fluorophore Derivatives-Gamma Phase Gallium Oxide Nanostructures

Chiu, Wan Hang Melanie January 2012 (has links)
The global lighting source energy consumption accounts for about 22% of the total electricity generated. New high-efficiency solid-state light sources are needed to reduce the ever increasing demand for energy. Single-phased emitter-based composed of transparent conducting oxides (TCOs) nanocrystals and fluorescent dyes can potentially revolutionize the typical composition of phosphors, the processing technology founded on the binding of dye acceptors on the surface of nanocrystals, and the configurations of the light-emitting diodes (LEDs) and electroluminescence devices. The hybrid white-light-emitting nanomaterial is based on the expanded spectral range of the donor-acceptor pair (DAP) emission originated from the γ-gallium oxide nanocrystals via Förster resonance energy transfer (FRET) to the surface-anchored fluorescent dyes. The emission of the nanocrystals and the sensitized emission of the chromophore act in sync as an internal relaxation upon the excitation of the γ–gallium oxide nanocrystals. It extends the lifetime of the secondary fluorescent dye chromophore and the internal relaxation within this hybrid complex act as a sign for a quasi single chromophore. The model system of white-light-emitting nanostructure system developed based on this technology is the γ–gallium oxide nanocrystals-Rhodamine B lactone (RBL) hybrid complex. The sufficient energy transfer efficiency of 31.51% within this system allowed for the generation of white-light emission with the CIE coordinates of (0.3328, 0.3380) at 5483 K. The relative electronic energy differences of the individual components within the hybrid systems based on theoretical computation suggested that the luminance of the nanocomposite comprised of RBL is dominantly mediated by FRET. The production of white-light-emitting diode (WLED) based on this technology have been demonstrated by solution deposition of the hybrid nanomaterials to the commercially available ultraviolet (UV) LED due to the versatility and chemical compatibility of the developed phosphors.
7

Förster Resonance Energy Transfer Mediated White-Light-Emitting Rhodamine Fluorophore Derivatives-Gamma Phase Gallium Oxide Nanostructures

Chiu, Wan Hang Melanie January 2012 (has links)
The global lighting source energy consumption accounts for about 22% of the total electricity generated. New high-efficiency solid-state light sources are needed to reduce the ever increasing demand for energy. Single-phased emitter-based composed of transparent conducting oxides (TCOs) nanocrystals and fluorescent dyes can potentially revolutionize the typical composition of phosphors, the processing technology founded on the binding of dye acceptors on the surface of nanocrystals, and the configurations of the light-emitting diodes (LEDs) and electroluminescence devices. The hybrid white-light-emitting nanomaterial is based on the expanded spectral range of the donor-acceptor pair (DAP) emission originated from the γ-gallium oxide nanocrystals via Förster resonance energy transfer (FRET) to the surface-anchored fluorescent dyes. The emission of the nanocrystals and the sensitized emission of the chromophore act in sync as an internal relaxation upon the excitation of the γ–gallium oxide nanocrystals. It extends the lifetime of the secondary fluorescent dye chromophore and the internal relaxation within this hybrid complex act as a sign for a quasi single chromophore. The model system of white-light-emitting nanostructure system developed based on this technology is the γ–gallium oxide nanocrystals-Rhodamine B lactone (RBL) hybrid complex. The sufficient energy transfer efficiency of 31.51% within this system allowed for the generation of white-light emission with the CIE coordinates of (0.3328, 0.3380) at 5483 K. The relative electronic energy differences of the individual components within the hybrid systems based on theoretical computation suggested that the luminance of the nanocomposite comprised of RBL is dominantly mediated by FRET. The production of white-light-emitting diode (WLED) based on this technology have been demonstrated by solution deposition of the hybrid nanomaterials to the commercially available ultraviolet (UV) LED due to the versatility and chemical compatibility of the developed phosphors.

Page generated in 0.0828 seconds