• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 43
  • 25
  • 21
  • 12
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 354
  • 214
  • 65
  • 51
  • 50
  • 48
  • 41
  • 40
  • 33
  • 33
  • 32
  • 30
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Altered neuronal lineages in the facial ganglia of Hoxa₂ mutant mice

Yang, Xiu. January 2008 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2008. / [School of Medicine] Department of Neurosciences. Includes bibliographical references.
12

The influences of intrinsic and extrinsic factors on the axonal regeneration of embryonic and adult dorsal root ganglion neurons : a cryoculture study /

Chui, Sze-wai. January 1998 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 72-102).
13

Localization of GABA receptors in the rat basal ganglia

Ng, Kwok Yan 01 January 2003 (has links)
No description available.
14

The relationship between axons and neurons in rat dorsal root ganglia at the macroscopic, microscopic, and ultra-structural level

Jacob, M. January 1966 (has links)
No description available.
15

Anatomical and histochemical studies of the globus pallidus and related basal ganglia nuclei

Staines, William Alan 11 1900 (has links)
The anatomical organization of the connections of the major components of the basal ganglia was investigated in detail. A sensitive procedure for the simultaneous study of afferents and efferents was carried out on the striatum (CP), globus pallidus (GP), and substantia nigra (SN). Previously well characterized connections of the CP were confirmed, additional evidence for a projection to the CP from the ventromedial nucleus of the thalamus was obtained and a topographically organized projection to the CP from the GP was discovered. A similar study of the SN revealed a nigral projection to the ipsilateral lateral dorsal nucleus of the thalamus and nigral input from the contralateral posterior lateral hypothalamus. The projection of the GP to the SN was found to be linked topographically to the striatonigral and pallidostriatal pathways. A study of the connections of the GP confirmed a massive projection from the CP and provided further evidence of a reciprocal connection. In addition, pallidal innervations of the entopeduncular nucleus and reticular nucleus of the thalamus were indicated. Because of the potential importance of a pallidostriatal projection and the significant number of technical difficulties associated with its demonstration, additional experiments were carried out to confirm the presence of this pathway and to determine its anatomical relationship to other basal ganglia connections. Retrograde labelling of pallidostriatal neurons, studied with electron microscopy and in combination with lesions of the striatum, confirmed that pallidal neurons project either to or through the striatum. Evidence for possibly two groups of pallidal neurons that project to the CP was obtained, and it was observed that both of these cell groups were congruent with the striatopallidal terminal fields. Comparisons of the distribution of cells retrogradely labelled after tracer injections into the cortex and CP in combination with histochemistry for acetylcholinesterase demonstrated that the population of pallidal neurons projecting to the CP was distinct from that of peripallidal cholinergic neurons which may project through the striatum to the cortex. Double retrograde fluorescent tracing experiments indicated that pallidal neurons which project to the CP also have collateral projections to the substantia nigra and perhaps to the subthalamic nucleus. The application of a new technique for studying, efferent projections allowed the confirmation and morphological description of the projection of the globus pallidus to the striatum. The characteristic morphology of this projection was shared by pallidal efferents which project to the entopeduncular nucleus, the reticular nucleus of the thalamus, the subthalamic nucleus and the substantia nigra. The fine morphological detail afforded by this method of anterograde tracing was utilized in combination with a histochemical protocol to show that pallidostriatal terminals end in part on somatostatin-containing neurons in the CP. / Graduate and Postdoctoral Studies / Graduate
16

Acetylcholinesterase and the basal ganglia : from cytology to function

Lehmann, John 05 1900 (has links)
Biochemical, anatomical, and histochemical studies were performed in the basal ganglia with an emphasis on the localization of the enzyme acetylcholinesterase (AChE). The existence of the enzyme in dopaminergic nigro-striatal neurons was demonstrated. Descending striato-nigral and pallido-nigral axons did not contain detectable amounts of AChE. A cell group called the nucleus basalis magno-cellularis, intimately associated with the globus pallidus, was found to contain high levels of AChE; furthermore, these neurons were shown to be the source of a cholinergic projection to the neocortex. In the striatum, large neurons containing high levels of AChE were found to be likely candidates as..the cholinergic neuron of the striatum. Cholinergic perikarya were found to be absent in the neocortex; nor were perikarya synthesizing large amounts of AChE found in the neocortex. An empirical hypothesis was formulated on the basis of these and other findings regarding cholinergic neurons: High levels of AChE are a necessary but not sufficient criterion for identifying cholinergic perikarya. / Graduate and Postdoctoral Studies / Graduate
17

Structural and functional heterogeneity of striatal interneuron populations

Garas, Farid January 2016 (has links)
The striatum is the largest nucleus of the basal ganglia, and acts as a point of convergence for thalamic, cortical and midbrain inputs. It is involved in both motor and associative forms of learning, and is composed of spiny projection neurons (SPNs) whose output along the so-called "direct pathway" and "indirect pathway" is modified by the activity of diverse sets of interneurons. Four "classical" or major classes of striatal interneuron can be identified according to the selective expression of the molecular markers parvalbumin (PV), calretinin (CR), nitric oxide synthase (NOS) or choline acetyltransferase (ChAT). Although the interneurons within a class are generally considered to be homogeneous in form and function, there is emerging evidence that some classes encompass multiple types of neuron, and that the heterogeneity in striatal interneurons extends beyond these four classes. Defining the extent of interneuron heterogeneity is important for understanding how the striatum processes distinct, topographically-organized inputs from the cortex and thalamus in order to govern a wide range of behaviors. To address these issues, a combination of immunofluorescence microscopy and stereological cell counting approaches was used in striatal tissue from rat, mouse and non-human primate. This was supplemented by in vivo recording and juxtacellular labelling of single neurons in rat. A first set of experiments showed that secretagogin (Scgn), a calcium-binding protein, is expressed by a large number of interneurons in the dorsal striatum of rat and primate, but not in the mouse. In all species tested, secretagogin was expressed by a subset of PV+ interneurons and a subset of CR+ interneurons in the dorsal striatum, but also labelled a group of interneurons that did not express any of the classical markers of striatal interneurons. A second set of experiments in the rat demonstrated that the selective co-expression of Scgn by PV+ interneurons delineates two topographically-, physiologically- and morphologically-distinct cell populations. These topographical differences in distribution were largely conserved in the primate caudate/putamen. In rats, PV+/Scgn+ and PV+/Scgn- interneurons differed significantly in their firing rates, firing patterns and phase-locking to cortical oscillations. The axons of PV+/Scgn+ interneurons were more likely to form appositions with the somata of direct pathway SPNs than indirect pathway SPNs, whereas the opposite was true for the axons of PV+/Scgn- interneurons. These two populations of GABAergic interneurons provide a potential substrate through which either of the striatal output pathways can be rapidly and selectively inhibited, and in turn mediate the expression of behavioral routines. A third set of experiments showed that CR+ interneurons of the dorsal striatum can be separated into three populations based on their molecular, topographical and morphological properties. Small-sized ("Type 3") CR+ interneurons co-expressed Scgn and were restricted in their distribution towards the rostro-medial poles of the striatum in both rats and primates. In rats, these neurons also expressed the transcription factor SP8, suggesting that they may be newly generated throughout adulthood. Large-sized, ("Type 1") CR+ interneurons did not express Scgn, but could be further distinguished by their expression of the transcription factor Lhx7. Medium-sized ("Type 2") CR+ interneurons did not express Scgn or Lhx7, and had heterogeneous electrophysiological properties in vivo. The expression of Scgn, but not other classical interneuron markers, identified a group of interneurons that were restricted in their distribution towards the ventro-medial aspects of the dorsal striatum. A fourth set of experiments showed that these neurons are also present in the core and the shell of the nucleus accumbens. Unlike the case of dorsal striatum, however, PV+ interneurons and CR+ interneurons of the nucleus accumbens did not co-express Scgn. Moreover, many of the interneuron populations studied had greater densities in the ventral striatum compared to the dorsal striatum, and had quantifiably strong biases in their distribution towards a variety of axes within both the core and the shell of the nucleus accumbens. These data thus highlight some major differences in the constituent elements of the microcircuits of dorsal striatum and nucleus accumbens. In conclusion, these studies have revealed a great deal of molecular, topographical, electrophysiological and structural heterogeneity within the interneuron populations of the striatum. As several of these interneuron populations were not evenly distributed throughout the striatum, this ultimately suggests that the microcircuit of the striatum is specialized according to regions that differ in their cortical, thalamic and dopaminergic inputs.
18

Anatomical and behavioural studies investigating the role of serotonin in feeding-related behaviours

Smart, Paul Richard January 1999 (has links)
No description available.
19

Electrophysiological and behavioural studies of the superior colliculus in behaving rats

Wang, Hongying January 1998 (has links)
No description available.
20

The morphology, neurochemistry, and consequences of sympathosensory plexuses

Smithson, LAURA 23 July 2013 (has links)
The development, maintenance, and survival of neurons depend on the function of neurotrophins such as nerve growth factor (NGF). One population of neurons that rely heavily on NGF for axonal growth and survival is the postganglionic sympathetic neurons. Trauma or disease resulting in injury to the peripheral nervous system causes an increase in the levels of this neurotrophin. This augmentation promotes the collateral sprouting of postganglionic sympathetic axons into those tissues having elevated levels of NGF. Often, NGF-induced sympathetic sprouting occurs in tissues that are normally innervated by these fibers however, high levels of NGF can also promote sprouting of axons into tissues that are normally devoid of sympathetic fibers, such as the sensory ganglia. When postganglionic sympathetic axons grow into the environment of sensory ganglia, they can converge and wrap around a subset of somata (i.e., cell bodies) belonging to primary sensory neurons. This phenomenon, referred to as sympathosensory plexuses is observed in adult mice and rats following peripheral nerve injury, and is also seen in adult transgenic mice that ectopically over express NGF. The overall aim for this project is to examine the morphological and neurochemical features, as well as the overall consequence of sympathosensory plexuses in nerve-injured adult mice and in adult transgenic mice that over express NGF. We hope that this novel information will add to our understanding of the underlying mechanisms associated with the formation of sympathosensory plexuses that occur following injury. / Thesis (Ph.D, Neuroscience Studies) -- Queen's University, 2013-07-23 18:51:47.902

Page generated in 0.0409 seconds