• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 44
  • 28
  • 17
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 352
  • 187
  • 177
  • 79
  • 63
  • 63
  • 41
  • 39
  • 36
  • 36
  • 31
  • 30
  • 30
  • 30
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Parasympathetic Control of the Heart. III. Neuropeptide Y-Immunoreactive Nerve Terminals Synapse on Three Populations of Negative Chronotropic Vagal Preganglionic Neurons

Gray, Alrich L., Johnson, Tannis A., Lauenstein, Jean Marie, Newton, Stephen S., Ardell, Jeffrey L., Massari, V. John 01 June 2004 (has links)
The vagal postganglionic control of cardiac rate is mediated by two intracardiac ganglia, i.e., the sinoatrial (SA) and posterior atrial (PA) ganglia. Nothing is known about the vagal preganglionic neurons (VPNs) that innervate the PA ganglion or about the neurochemical anatomy of central afferents that innervate these VPNs. These issues were examined using light microscopic retrograde labeling methods and dual-labeling electron microscopic histochemical and immunocytochemical methods. VPNs projecting to the PA ganglion are found in a narrow column exclusively in the ventrolateral nucleus ambiguus (NA-VL). These neurons are relatively large (37.6 ± 2.7 μm by 21.3 ± 3.4 μm) with abundant cytoplasm and intracellular organelles, rare somatic and dendritic spines, round uninvaginated nuclei, and myelinated axons. Previous physiological data indicated that microinjections of neuropeptide Y (NPY) into the NA-VL cause negative chronotropic effects. The present morphological data demonstrate that NPY-immunoreactive nerve terminals formed 18 ± 4% of the axodendritic or axosomatic synapses and close appositions on VPNs projecting to the PA ganglion. Three approximately equal populations of VPNs in the NA-VL were retrogradely labeled from the SA and PA ganglia. One population each projects to the SA ganglion, the PA ganglion, or to both the SA and PA ganglia. Therefore, there are both shared and independent pathways involved in the vagal preganglionic controls of cardiac rate. These data are consistent with the hypothesis that the central and peripheral parasympathetic controls of cardiac rate are coordinated by multiple potentially redundant and/or interacting pathways and mechanisms.
182

Parasympathetic Control of the Heart. II. A Novel Interganglionic Intrinsic Cardiac Circuit Mediates Neural Control of Heart Rate

Gray, Alrich L., Johnson, Tannis A., Ardell, Jeffrey L., Massari, V. John 01 June 2004 (has links)
Intracardiac pathways mediating the parasympathetic control of various cardiac functions are incompletely understood. Several intracardiac ganglia have been demonstrated to potently influence cardiac rate [the sinoatrial (SA) ganglion], atrioventricular (AV) conduction (the AV ganglion), or left ventricular contractility (the cranioventricular ganglion). However, there are numerous ganglia found throughout the heart whose functions are poorly characterized. One such ganglion, the posterior atrial (PA) ganglion, is found in a fat pad on the rostral dorsal surface of the right atrium. We have investigated the potential impact of this ganglion on cardiac rate and AV conduction. We report that microinjections of a ganglionic blocker into the PA ganglion significantly attenuates the negative chronotropic effects of vagal stimulation without significantly influencing negative dromotropic effects. Because prior evidence indicates that the PA ganglion does not project to the SA node, we neuroanatomically tested the hypothesis that the PA ganglion mediates its effect on cardiac rate through an interganglionic projection to the SA ganglion. Subsequent to micro-injections of the retrograde tracer fast blue into the SA ganglion, >70% of the retrogradely labeled neurons found within five intracardiac ganglia throughout the heart were observed in the PA ganglion. The neuroanatomic data further indicate that intraganglionic neuronal circuits are found within the SA ganglion. The present data support the hypothesis that two interacting cardiac centers, i.e., the SA and PA ganglia, mediate the peripheral parasympathetic control of cardiac rate. These data further support the emerging concept of an intrinsic cardiac nervous system.
183

Thoracic Spinal Cord Neuromodulation Obtunds Dorsal Root Ganglion Afferent Neuronal Transduction of the Ischemic Ventricle

Salavatian, Siamak, Ardell, Sarah M., Hammer, Mathew, Gibbons, David, Armour, J. Andrew, Ardell, Jeffrey L. 01 November 2019 (has links)
Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. The study objective was to determine whether thoracic spinal dorsal column stimulation (SCS) modulates cardiac afferent sensory transduction of the ischemic ventricle. In anesthetized canines (n = 16), extracellular activity generated by 62 dorsal root ganglia (DRG) soma (T1-T3), with verified myocardial ischemic (MI) sensitivity, were evaluated with and without 20-min preemptive SCS (T1-T3 spinal level; 50 Hz, 90% motor threshold). Transient MI was induced by 1-min coronary artery occlusion (CAO) of the left anterior descending (LAD) or circumflex (LCX) artery, randomized as to sequence. LAD and LCX CAO activated cardiac-related DRG neurons (LAD: 0.15 ± 0.04-1.05 ± 0.20 Hz, P < 0.00002; LCX: 0.08 ± 0.02-1.90 ± 0.45 Hz, P < 0.0003). SCS decreased basal neuronal activity of neurons that responded to LAD (0.15 ± 0.04 to 0.02 ± 0.01 Hz, P < 0.006) and LCX (0.08 ± 0.02 to 0.02 ± 0.01 Hz, P < 0.003). SCS suppressed responsiveness to transient MI (LAD: 1.05 ± 0.20-0.03 ± 0.01 Hz; P < 0.0001; LCX: 1.90 ± 0.45-0.03 ± 0.01 Hz; P < 0.001). Suprathreshold SCS (1 Hz) did not activate DRG neurons antidromically (n = 10 animals). Ventricular fibrillation (VF) was associated with a rapid increase in DRG activity to a maximum of 4.39 ± 1.07 Hz at 20 s after VF induction and a return to 90% of baseline within 10 s thereafter. SCS obtunds the capacity of DRG ventricular neurites to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress, thereby contributing to its capacity to cardioprotect.NEW & NOTEWORTHY Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. This study determined that thoracic spinal column stimulation (SCS) obtunds the capacity of dorsal root ganglia ventricular afferent neurons to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress. This modulation does not reflect antidromic actions of SCS but likely reflects efferent-mediated changes at the myocyte-sensory neurite interface.
184

Localization of neurosecretory cells within the cerebral ganglia of Amphiphorus imparispinosus Griffin, 1898 (Hoplonemertea) and their possible regulatory role in the annual reproductive cycle

Jacobson, Gail H. 01 January 1977 (has links)
Nemerteans are common invertebrates along coastlines in both temperate and arctic climates throughout the world. Amphiphorus imparispinosus is a carnivorous member of this phylum that is found abundantly in the intertidal areas of the Oregon coast. As in many other invertebrate phyla, endocrine integration within the nemerteans is thought to be accomplished by neurosecretory mechanisms. In Amphiphorus the presence of these neurosecretory systems has not been previously shown. This project was undertaken to determine if neurosecretory cells are present within the central nervous system of this species and. further, to examine seasonal changes in the number and appearance of these cells. The second objective of this research was to determine the reproductive cycle of Amphiphorus and to examine a possible correlation between this cycle and seasonal changes in the neurosecretory system.
185

Studies on High-Throughput Single-Neuron RNA Sequencing and Circadian Rhythms in the Nudibranch, Berghia stephanieae

Bui, Thi 01 February 2021 (has links)
One of the goals of neuroscience is to classify all of the neurons in the brain. Neuronal types can be defined using a combination of morphology, electrophysiology, and gene expression profiles. Gene expression profiles allow differentiation between cells that share similar characteristics. Leveraging the advantage of Berghia stephanieae (Gastropoda; Nudibranchia), which has around 28,000 neurons, I constructed high-throughput single-neuron transcriptomes for its whole brain. I produced a single-cell dissociation protocol and a custom data analysis pipeline for data of this nature. Around 129,000 cells were collected from 18 rhinophore ganglia and 20 circumesophageal ring ganglia (brain), consisting of the cerebropleural, pedal, and buccal ganglia. Messenger RNA libraries were constructed using the 10X Genomics’ Chromium platform. After library preparation, around 1,000 cells were recovered and sequenced. The HTStream package was utilized to trim off unwanted sequences from the raw reads and remove PCR duplicates and other contamination, then the salmon alevin package was employed to construct gene-by-cell matrices containing all the transcripts for each gene in each cell. The Seurat pipeline was used to extract this expression data from the matrices, normalize it, and perform dimensionality reduction. The cells were clustered based on similarities in their gene expression profiles. The cells formed eight clusters on a UMAP graph, each having distinct marker genes. Additionally, one cluster was composed of almost exclusively cells from the rhinophore ganglia, accounting for 30% of all rhinophore ganglion cells in the sample. Cells from the rhinophore ganglia are as heteregenous as cells from the rest of the brain, with cells forming six clusters. Cell populations that express the same neurotransmitter were identified for a wide range of both small-molecule neurotransmitters and neuropeptides. In a separate project, the locomotion of Berghia was recorded over 9 days with 2 lighting regimes: LD first and DD first. The results suggest that locomotion of Berghia is governed by circadian clock and that Berghia is nocturnal. Hunger state likely plays a role in modulating this circadian rhythm.
186

Cellular alterations of the human retina in Parkinson’s disease and their use as early biomarkers

Ortuño-Lizarán, Isabel 19 July 2019 (has links)
En la presente Tesis Doctoral se describen los cambios celulares que ocurren en la retina en la enfermedad de Parkinson y su posible uso como biomarcadores tempranos de la enfermedad. Los pacientes con enfermedad de Parkinson poseen acumulaciones de alfa sinucleína fosforilada en la retina similares a las que se encuentran en el cerebro de los mismos pacientes. De hecho, la cantidad de alfa-sinucleína fosforilada en la retina correlaciona con la cantidad de alfa-sinucleína fosforilada en el cerebro, con el estadio de progresión de la enfermedad y con la severidad de los síntomas motores. Además, en la retina de enfermos de párkinson se describe una degeneración de las células ganglionares melanopsínicas de la retina, lo que podría explicar las alteraciones en los ritmos circadianos y los desórdenes del sueño que aparecen en pacientes. Finalmente, también se muestra la degeneración de las células amacrinas dopaminérgicas, que se reducen en un 45%. Este fallo en el sistema dopaminérgico de la retina provoca alteraciones morfológicas en las células amacrinas AII, sus principales postsinápticas, y podría explicar algunas alteraciones visuales descritas en la enfermedad como la disminución de la sensibilidad al contraste o de la agudeza visual. En global, los resultados muestran que la retina reproduce los procesos degenerativos que ocurren en el cerebro en la enfermedad de Parkinson y, por tanto, que es un tejido idóneo para el estudio de la enfermedad. Además, el estudio de la retina aporta información sobre el estadio de la enfermedad y puede ser empleado como un biomarcador temprano que ayude al diagnóstico y seguimiento de la misma.
187

Macular Structure Parameters as an Automated Indicator of Paracentral Scotoma in Early Glaucoma / 黄斑部構造パラメータを用いた早期緑内障における傍中心暗点の自動検出

Kimura, Yugo 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18875号 / 医博第3986号 / 新制||医||1008(附属図書館) / 31826 / 京都大学大学院医学研究科医学専攻 / (主査)教授 森田 智視, 教授 福山 秀直, 教授 大森 治紀 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
188

Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae / コラーゲン上で培養したヒト人工多能性幹細胞由来神経細胞のモルモット蝸牛内への細胞移植

Ishikawa, Masaaki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20247号 / 医博第4206号 / 新制||医||1020(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊佐 正, 教授 鈴木 茂彦, 教授 高橋 淳 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
189

Photopotentiation of Ganglion Cell Photoreceptors and Pupillary Light Responses

Yuhas, Phillip Thomas 17 October 2019 (has links)
No description available.
190

Examining Postnatal Retinal Thickness and Retinal Ganglion Cell Count in the Ts65Dn Mouse Model of Down Syndrome

Andrew David Folz (15339424) 18 May 2023 (has links)
<p>Down syndrome (DS) is a genetic condition caused by the triplication of human chromosome  21 and presents with many phenotypes including decreased brain size, hypocellularity in the brain,  and assorted ocular phenotypes. Some of the ocular phenotypes seen are increased risk of cataracts,  accommodation difficulties, increased risk of refractive errors, and increased retinal thickness. The  Ts65Dn mouse model of DS is a classically used mouse model as it presents a number of  phenotypes also seen in those with DS. Some of these phenotypes include decreased brain volume,  abnormal synaptic plasticity, and ocular phenotypes. These ocular phenotypes include decreased  visual acuity, cataracts, and increased retinal thickness. The Ts65Dn mouse model is trisomic for <em>Dyrk1a</em>, a gene of interest in DS research. We hypothesize that there will be a genotypic and sex effect of retinal thickness and retinal ganglion cell (RGC) count at postnatal day 15 in the Ts65Dn  mouse model of DS. Retinal slices were taken from male and female trisomic and euploid Ts65Dn  mice at P15 and fluorescently labeled for RGCs and bipolar cells via immunohistochemistry. The  retinas were measured for total retinal thickness and RNA-binding protein (RBPMS) positive cells in the RGC layer were counted. There was no genotypic or sex effect when comparing retinal  thickness in trisomic mice as compared to euploid mice. There was a genotypic effect of RBPMS  positive cell count in which the trisomic mice had a higher number of RBPMS positive cells than  euploid mice. Increased retinal thickness along with increased RGC number have both been  implicated with decreased apoptosis in the retina. In the Ts65Dn mouse model along with in  individuals with DS, this could be due to an increase in DYRK1A protein levels reducing apoptosis.  In future studies, determining DYRK1A’s influence in retinal thickness and RGC number could  result in a treatment for overactive <em>DYRK1A</em> that could normalize retinal thickness and RGC  number in those with DS.</p>

Page generated in 0.0583 seconds