• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 44
  • 28
  • 17
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 352
  • 187
  • 177
  • 79
  • 63
  • 63
  • 41
  • 39
  • 36
  • 36
  • 31
  • 30
  • 30
  • 30
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Neurodegeneration and neuroprotection in glaucoma retinopathy-probing the role of endothelin-1, RAGE, A{221} and lycium barbarum

Mi, Xuesong., 米雪松. January 2011 (has links)
In order to understand the possible mechanisms in the glaucoma-related retinopathy, the role of the vasoconstrictor, endothelin-1 (ET-1), receptor for advanced glycation end-products (RAGE) as well as its ligand, Aβ in the degeneration of retinal ganglion cells (RGCs) were studied in experimental models. In addition, the relationship of ET-1, RAGE and Aβ for the RGC protective mechanism of Lycium Barbarum (LB) was also investigated. In the first part, ET-1 together with its receptors, ETA and ETB, were studied to understand their possible roles in chronic ocular hypertension (COH). The neuronal protective mechanism of LB was also determined by using a well established COH rat model. In normal rats, ET-1 and its receptors, ETA and ETB, were distributed in the retina, vasculature and optic nerve. Interestingly, ET-1 expression was up-regulated after COH. LB could decrease the expression of ET-1 and regulate its receptors (up-regulation of ETB and down-regulation of ETA in vasculature; up-regulation of ETA and down-regulation of ETB in RGCs) under the condition of COH. These data suggested that the RGC protective mechanism of LB might be related to its ability to regulate the biological effects of ET-1. To investigate the pathogenic effect of ET-1 in glaucoma, in the second part, we used transgenic mice with over-expression of ET-1 on endothelial cells (TET-1 mice). We found that beginning at 10-12 months, TET-1 mice showed a progressive retinal degeneration (loss of RGCs associated with neurons in the inner nuclear layer and outer nuclear layer of the retina) without elevation of the intraocular pressure (IOP). The data demonstrated that TET-1 mice may serve as a potential model to investigate the role of endothelial ET-1 in the pathogenesis of normal tension glaucoma and other degenerative retinopathy. To investigate whether LB plays a role on neuronal protection other than in COH, in the third part, we used an acute ocular hypertension (AOH)-induced ischemia mouse model. We found that LB could rescue RGCs under AOH insult, associating with blood vessel protection (decreasing the damage of blood-retinal-barriers and rescuing the survival of endothelial cells and pericytes) and inhibiting retinal gliosis. We also found the protective mechanism of LB was closely correlated with down-regulation of the expression of RAGE, ET-1, APP (amyloid precursor protein), AGE (advanced glycation end-product) as well as Aβ; therefore to reduce the damage effects of these RAGE-mediated reactions to the retinal neurons, blood vessels and glial cells involved in the ischemic insult. Taken together, the present study demonstrated that TET-1 mice may be a potential model for investigating the role of ET-1 in degenerative retinopathies, such as normal tension glaucoma. We also showed the neuronal protective mechanism of LB in vivo was associated with inhibiting the biological effect of ET-1 and down-regulating the damage signaling pathways mediated by the activation of RAGE and its ligands (AGE and Aβ). These results provided further understandings in the mechanism of the glaucoma-related retinopathy. In addition, LB could be a neuroprotective agent to the retina following both chronic and acute injuries. / published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
152

Models of Visual Processing by the Retina

Real, Esteban January 2012 (has links)
The retina contains neural circuits that carry out computations as complex as object motion sensing, pattern recognition, and position anticipation. Models of some of these circuits have been recently discovered. A remarkable outcome of these efforts is that all such models can be constructed out of a limited set of components such as linear filters, instantaneous nonlinearities, and feedback loops. The present study explores the consequences of assuming that these components can be used to construct models for all retinal circuits. I recorded extracellularly from several retinal ganglion cells while stimulating the photoreceptors with a movie rich in temporal and spatial frequencies. Then I wrote a computer program to fit their responses by searching through large spaces of anatomically reasonable models built from a small set of circuit components. The program considers the input and output of the retinal circuit and learns its behavior without over-fitting, as verified by running the final model against previously unseen data. In other words, the program learns how to imitate the behavior of a live neural circuit and predicts its responses to new stimuli. This technique resulted in new models of retinal circuits that outperform all existing ones when run on complex spatially structured stimuli. The fitted models demonstrate, for example, that for most cells the center--surround structure is achieved in two stages, and that for some cells feedback is more accurately described by two feedback loops rather than one. Moreover, the models are able to make predictions about the behavior of cells buried deep within the retina, and such predictions were verified by independent sharp-electrode recordings. I will present these results, together with a brief collection of ideas and methods for furthering these modeling efforts in the future. / Physics
153

Neuroprotective effect of Ginkgo biloba extract on retinal ganglion cells in a rat glaucoma model

Lai, Ching., 賴晴. January 2003 (has links)
published_or_final_version / abstract / toc / Anatomy / Master / Master of Philosophy
154

Neuroprotection of low energy laser on retinal ganglion cells survivalafter optic nerve injury

林瑋源, Lam, Wai-yuan, Leon. January 2000 (has links)
published_or_final_version / Anatomy / Master / Master of Philosophy
155

Luman/CREB3 is a novel retrograde regulator of sensory neuron regeneration: mechanism of action

2014 July 1900 (has links)
Luman (CREB3, LZIP) is a basic leucine zipper transcription factor involved in regulation of the unfolded protein response (UPR), dendritic cell maturation, and cell migration. But despite reported expression in primary sensory neurons, little is known about its role in the nervous system. Luman mRNA from rat sensory neurons was amplified and its coding sequence was determined. The rat Luman cDNA contains a full-length open reading frame encoding 387 amino acids, and the recombinant protein generated from this clone activated transcription from UPR elements. Quantitative RT-PCR revealed rat Luman transcripts in a variety of rat tissues with the highest levels in nervous system tissue. In situ hybridization confirmed the findings and demonstrated that the Luman mRNA hybridization signal localizes to neurons and satellite glial cells in dorsal root ganglia (DRG), the cytoplasm of hepatocytes in liver, and the hippocampal pyramidal cell layers in CA1 and CA3 and the granular cell layer of the dentate gyrus. Luman protein localizes with axonal endoplasmic reticulum (ER) components along the axon length within the sciatic nerve and is activated by sciatic nerve injury. Adult sensory axons also contain Luman mRNA which is translated within the axon and transported to the cell body via the importin-mediated retrograde transport system in response to nerve injury. Further, creation of an N-terminal, C-terminal dual fluorescence-tagged Luman adenoviral construct allowed visualization of the cleavage and retrograde translocation of the N-terminal portion of Luman to the nucleus in real time in vivo and in vitro. Neuronal or subcellular axonal knockdown of Luman significantly impaired the intrinsic ability of injury-conditioned, but not naïve, sensory neurons to extend the regeneration-associated elongating form of neurites. Sciatic nerve crush injury also induced activation of the UPR in axotomized DRGs, including genes linked to cholesterol biosynthesis. Knockdown of Luman decreased the activation of UPR and cholesterol biosynthesis, and axotomy-inducted increases in neurite outgrowth, which could be largely rescued with either mild UPR inducer treatment or cholesterol supplementation. Together these findings provide novel insights linking remote injury-associated axonal ER responses to the regenerative growth capacity of adult sensory neurons via axonal activation and synthesis of Luman and reveal a role for the UPR in regulation of axotomy-induced neurite outgrowth that is critically dependent on Luman.
156

Le ganglion sentinelle post chimiothérapie

Gimbergues, Pierre 11 June 2010 (has links) (PDF)
Une désescalade thérapeutique des traitements du cancer du sein est observée notamment grâce à la chimiothérapie néo-adjuvante (CNA). Alors que la technique du ganglion sentinelle (GS) n'est actuellement pas recommandée après CNA, nous avons démontré sa faisabilité dans une série prospective de 129 patientes traitées par CNA avec un taux d'identification de 93,8%, un taux de FN de 14,3% et de 0% pour les patientes N0 avant CNA. En cas d'atteinte duGS, le risque de GNS métastatique était corrélé à la taille tumorale (p=0.016) et la taille de la métastase du GS (p=0.0055). Le nomogramme du MD Anderson (AUC=0.716) et le score de Thenon (AUC=0.778) pouvaient évaluer la probabilité d'atteinte du GNS. L'analyse per opératoire du GS par apposition a permis l'identification d'une métastase chez 72% des patientes (sensibilité=38.2% ; spécificité=97.8%). Les patientes qui présentaient une micro métastase ou la présence de cellules tumorales isolées dans le GS avaient un risque multiplié par 2,3 de FN de l'apposition par rapport aux patientes qui avaient une atteinte macro métastatique. En conclusion, notre travail a permis de montrer que la CNA n'avait pas d'influence négative sur la faisabilité de la technique du GS, en particulier pour les patientes N0 clinique avant traitement. Après CNA, l'analyse per opératoire du GS est possible ainsi que l'utilisation de certains nomogrammes déjà existants pour calculer la probabilité d'atteinte du GNS lorsque le GS est métastatique.
157

Modulation of ionotropic glutamate receptors in retinal neurons by the amino acid D-serine

Daniels, Bryan 02 March 2011 (has links)
D-Serine is regarded as an obligatory co-agonist required for the activation of NMDA-type glutamate receptors (NMDARs). In the retina D-serine and a second NMDAR coagonist, glycine, are present at similar concentration and the cells that produce and release them are in close apposition. This arrangement allows for an abundant supply of coagonists and under certain conditions the NMDAR coagonist binding site could be saturated. There is also evidence suggesting that D-serine can act in an inhibitory manner at AMPA/kainate-type glutamate receptors (GluRs). Glutamate receptor activation can lead to direct and indirect elevation of intracellular calcium (Ca2+) concentration ([Ca2+]i). Therefore, in this thesis, I predominantly used Ca2+ imaging techniques to study the effect of D-serine on GluR activation in the mammalian retina. I first describe a novel method I developed to load retinal cells with Ca2+ indicator dye using electroporation and show that retinas remain viable and responsive following electroporation. This technique was used to explore the excitatory role of D-serine at NMDARs and its potential inhibition of AMPA/kainate receptors using cultured retinal ganglion cells (RGCs) and isolated retina preparations. Using cultured RGCs I demonstrated that D-serine and glycine enhance NMDAR-mediated Ca2+ responses in a concentration-dependent manner and are equally effective as coagonists. In isolated retinas I showed that D-serine application enhanced NMDA-induced responses consistent with sub-saturating endogenous coagonist concentration. Degradation of endogenous D-serine reduced NMDAR-mediated Ca2+ responses supporting the contribution of this coagonist to NMDAR activation in the retina. Using imaging and two different electrophysiological approaches, I found that D-serine reduced AMPA/kainate receptor-mediated responses in cultured RGCs and isolated retinas at concentrations that are saturating at NMDARs. Antagonist experiments suggest that the majority of inhibition is due to D-serine acting on AMPA receptor activity. Degradation of endogenous D-serine enhanced AMPA/kainate-induced responses of some cells in isolated retina suggesting that, under these conditions, D-serine concentration may be sufficient to inhibit AMPA receptor activity. Overall, the work in this thesis illustrates the utility of electroporation as a method to load Ca2+-sensitive fluorescent dyes into retinal cells and highlights the potential role for D-serine as a modulator of ionotropic GluRs in the CNS.
158

The Analysis of Brn3a and Thy1-CFP as Potential Markers of Retinal Ganglion Cells after Optic Nerve Injury in Mice

Levesque, Julie 28 May 2013 (has links)
Purpose: Retinal ganglion cell (RGC) loss is a measure of the progression of many visual disorders. It is important to identify RGCs with good specificity, so RGC numbers can be reliably analyzed. The purpose of this study was to analyze the effectiveness of two current RGC markers: Brn3a immunohistochemistry and the expression of Thy1-CFP in the Thy1-CFP transgenic mouse. Methods: Rhodamine-?-isothiocyanate (RITC) retrograde labeling, immunohistochemistry, wholemount retinal imaging, western blot, cross sectional analysis and cell densities in uninjured control animals and 3, 5, 7 and 14 days post-optic nerve crush (ONC) or transection (ONT) were tabulated. Results: Brn3a positive (Brn3a+) cell density was significantly less than RITC positive (RITC+) cell density in control mice. After ON injury, Brn3a+ cell density did not decrease at the same rate as RITC+ cell density. The density of RGCs that express Brn3a was significantly less than the individual Brn3a+ and RITC+ cell density at all experimental time points. Thy1-CFP positive (Thy1-CFP+) cell density was significantly less than RITC+ in control mice and significantly more than RITC+ cell density 14 days after ON injury. Thy1-CFP co-localized with ChAT positive (ChAT+) cells 7 days after ONT. Conclusion: Brn3a and Thy1-CFP are not reliable markers of RGCs. Retrograde labeling remains one of the most reliable methods of labeling RGCs in mice.
159

Electrophysiological Properties of a Quail Neuroretina Cell Line (QNR/D): Effects of Growth Hormone?

Andres, Alexis D Unknown Date
No description available.
160

Applications of organ culture of the mouse inner ear

Berggren, Diana January 1991 (has links)
The embryonic mouse inner ear was used as a model with which to study ototoxicity and tissue interactions. The inner ear anlage can be explanted and cultured in vitro from about the 12th gestational day (gd), and will differentiate parallel with the inner ear developing in vivo until a time corresponding to birth (21st gd). During this period the ovoid sac develops into the labyrinth. In the present thesis work, otic anlagen from gd 12, 13, 13.5, 15 and 16 were used. As a rule the explants were kept in culture until a time point equivalent to the 21st gd. Analyses using freeze-fracture technique and transmission electron microscopy showed that in cultured 13th gd otocysts the development of junctional complexes followed the same principal pattern as in vivo. Tight junctions develop into many strands lying parallel to the apical surface of all epithelial cells. Uncoupling of the hair cells occurs with loss of gap junctions. Some tight junctions had an aberrant appearence, with in part very thick strands and strands running at right angles to the apical surface. All aminoglycosides are potentially ototoxic. In the inner ear, outer hair cells of the organ of Corti and vestibular type I hair cells are affected by these antibiotics. The access route to the hair cells and the sites and mechanisms of action of aminoglycosides are not precisely defined. The uptake of tritiated tobramycin in 16th gd inner ears was studied. An initial rapid uptake of the drug, within 10 min, was followed by a slower accumulation, reaching a steady state after 60 min. Most of the tobramycin was bound reversibly, at least after a short period of incubation (2 h). The irreversibly bound fraction was of the same magnitude as the uptake within 10 min. Uptake took place against a concentration gradient. The otocyst can differentiate even without the statoacoustic ganglion. The interaction of the sensory epithelium with the ganglion was investigated by explanting the statoacoustic ganglion without target tissue. Twenty-five percent of the ganglions survived and had outgrowth of neurites but there was no differentiation into either the cochlear or vestibular type of neuron cells. Exposure of cultured otocysts (13 or 13.5 gd) to l-azetidine-2-carboxylic acid, a 1-proline analog that disrupts formation of collagen, resulted in retarded morphogenesis of the labyrinth and a dose- dependent derangement of the basal lamina. The expression of intermediate filaments (IFs) was analysed using monoclonal antibodies. The same IF pattem was found in cultured inner ears as in vivo. Explants were taken on 13th, 15th or 16th gd. Exposure to gentamicin, ethacrynic acid or cisplatin did not alter the IF composition. Cytokeratins (CKs) 8 and 18 were identified in all inner ear epithelia. In addition CKs 7 and 19 were visualized in the epithelia involved in maintaining endolymph homeostasis. The ganglion cells showed coexpression of CK, vimentin and neurofilaments. The elemental composition of the endolymph compartment of 16th gd inner ears cultured for 5 days was studied using energy-dispersive X-ray microanalysis. Na to K ratios characteristic of endolymph were found. / <p>S. 1-34: sammanfattning, s. 37-88: Härtill 6 uppsatser</p> / digitalisering@umu

Page generated in 0.1004 seconds