31 |
Pupil Constriction During Prolonged Exposure to Flickering Stimuli: Evidence for Cholinergic ipRGC StimulationGalko, Elizabeth 26 August 2019 (has links)
No description available.
|
32 |
ELUCIDATING CELLULAR MECHANISMS UNDERLYING RETINAL GANGLION CELL NEURODEGENERATION IN A HUMAN PLURIPOTENT STEM CELL-DERIVED MODELKang-Chieh Huang (14142150) 03 February 2023 (has links)
<p>Glaucoma is a leading cause of blindness characterized by the progressive loss of retinal ganglion cells (RGCs), essentially severing the connection between the eye and the brain. Among many underlying causes of the disease, mutations in the Optineurin (OPTN) gene result in severe RGC neurodegeneration in the absence of elevated intraocular pressure, providing a novel opportunity to study molecular mechanisms that lead to RGC neurodegeneration associated with glaucoma. Efforts of this study establishing a human pluripotent stem cell (hPSC)-derived in vitro disease model by inserting OPTN(E50K) mutation via CRISPR/Cas9 genome editing and investigate the cellular mechanisms of RGC neurodegeneration associated with glaucoma. OPTN(E50K) RGCs revealed neurodegeneration phenotypes, including downregulation of RGCs transcription factors, neurite retraction, and hyperexcitability, suggesting that OPTN(E50K) RGCs can serve as an appropriate disease model to study glaucoma-associated neurodegeneration. Since OPTN serves a primary role as an autophagy receptor, we further hypothesized that the OPTN(E50K) mutation disrupts autophagy in RGCs, and modulation of autophagy by mammalian target of rapamycin (mTOR)-independent pathways can preserve RGC phenotypes by maintaining mTOR signaling. OPTN(E50K) RGCs exhibited a higher number of OPTN puncta along with an overall reduced expression of OPTN protein, indicating a gain of toxic protein accumulation or loss of protein function. Furthermore, OPTN(E50K) RGCs revealed an accumulation of the autophagosome protein LC3 in a punctal manner as well as increased expression of lysosomal proteins, suggesting a disruption of degradation pathway in autophagosome and lysosome fusion. As mTOR complex 1 (mTORC1) signaling serves as a negative regulator of autophagy, a downregulation of mTORC1 signaling via activation of stress sensor adenosine monophosphate-activated protein kinase (AMPK) was observed as a possible compensatory mechanism for autophagy deficits in OPTN(E50K) RGCs. Pharmacological inhibition of mTOR in wild-type hRGCs resulted in similar disease-related phenotypes, while preservation of the mTOR pathway in OPTN(E50K) RGCs by treatment with the mTOR-independent autophagy modulator trehalose cleared OPTN accumulated puncta, preserving mTORC1 signaling, as well as rescuing neurodegenerative phenotypes. To further validate these associations in an animal model, the microbead occlusion mouse model was established by injection of magnetic microbeads in the anterior chamber to block aqueous outflow resulting ocular hypertension. In agreement with our findings in hRGCs, a decrease in mTOR signaling associated with an increase in the expression of autophagy-associated proteins was observed in RGCs in the microbead occlusion model. Additionally, these disease-related phenotypes were observed specifically within RGCs but not cortical neurons with an underlying OPTN(E50K) mutation, demonstrating that autophagy represents an essential pathway in RGCs to maintain homeostasis, and selective disrupt of autophagy in RGCs leads to neurodegeneration. Taken together, the results of this study highlight an essential balance between autophagy and mTORC1 signaling that is essential for the homeostasis of RGCs, while disruption to these signaling pathways contributes to neurodegenerative features in glaucoma. These results also demonstrated the ability to pharmacologically intervene to experimentally manipulate these pathways and rescue neurodegenerative phenotypes, providing a potential therapeutic target to prevent glaucoma-associated neurodegeneration. </p>
|
33 |
The Effect of Refractive Error and Light Exposure on Red and Blue Light-Driven Pupil ResponsesOrr, Danielle Jean 28 July 2017 (has links)
No description available.
|
34 |
Neuron-Derived Semaphorin 3A is an Early Inducer of Vascular Permeability in Diabetic RetinopathyCerani, Agustin 12 1900 (has links)
La détérioration de la barrière hémato rétinienne et l'oedème maculaire consécutif est une manifestation cardinale de la rétinopathie diabétique (RD) et la caractéristique clinique la plus étroitement associée à la perte de la vue. Alors que l'oedème maculaire affecte plus de 25% des patients souffrant de diabète, les modalités de traitement actuellement disponibles tels que les corticostéroïdes administrés localement et les thérapies anti-VEGF récemment approuvés présentent plusieurs inconvénients. Bien que le lien entre une rupture de l’unité neuro-vasculaire et la pathogénèse de la RD ait récemment été établi, l’influence de la signalisation neuro-vasculaire sur la vasculopathie oculaire diabetique a jusqu’à présent reçu peu d’attention. Ici, à l’aide d’ètudes humaines et animales, nous fournissons la première preuve du rôle essentiel de la molécule de guidage neuronale classique Sémaphorine 3A dans l’instigation de la perméabilité vasculaire maculaire pathologique dans le diabète de type 1. L’étude de la dynamique d’expression de Sémaphorine 3A révèle que cette dernière est induite dans les phases précoces hyperglycèmiques du diabète dans la rétine neuronale et participe à la rupture initiale de la fonction de barrière endothéliale. En utilisant le modèle de souris streptozotocine pour simuler la rétinopathie diabétique humaine, nous avons démontré par une série d’approches analogue que la neutralisation de Sémaphorine 3A empêche de façon efficace une fuite vasculaire rétinienne. Nos résultats identifient une nouvelle cible thérapeutique pour l’oedème maculaire diabétique en plus de fournir d’autres preuves de communication neuro-vasculaire dans la pathogènese de la RD. / The deterioration of the blood retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. While macular edema affects over 25% of patients suffering from diabetes, currently available treatment modalities such as locally administered corticosteroids and recently approved anti-VEGF therapies, present several drawbacks. Although recent insight on the pathogenesis of DR points to a breakdown in the neurovascular unit, neurovascular cross-talk and its influence on diabetic ocular vasculopathy has thus far received limited attention. Here we provide the first evidence from both human and animal studies for the critical role of the classical neuronal guidance cue Semaphorin3A in instigating pathological macular vascular permeability in type I diabetes. Investigation of the dynamics of expression reveal that Semaphorin3A is induced in the early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function. Using the streptozotocin mouse model as a proxy for human diabetic retinopathy, we demonstrate by a series of orthogonal approaches (gene silencing or treatment with soluble Neuropilin-1 employed as a Semaphorin3A trap), that neutralization of Semaphorin3A efficiently prevents retinal vascular leakage. Our findings identify a new therapeutic target for DME and provide further evidence for neurovascular cross-talk in pathogenesis of DR.
|
35 |
Role of the ASPP Family in the Regulation of p53-Mediated Apoptotic Death of Retinal Ganglion Cells after Optic Nerve InjuryWilson, Ariel M. 02 1900 (has links)
Le glaucome est la première cause de cécité irréversible à travers le monde. À présent il n’existe aucun remède au glaucome, et les thérapies adoptées sont souvent inadéquates. La perte de vision causée par le glaucome est due à la mort sélective des cellules rétiniennes ganglionnaires, les neurones qui envoient de l’information visuelle de la rétine au cerveau. Le mécanisme principal menant au dommage des cellules rétiniennes ganglionnaires lors du glaucome n’est pas bien compris, mais quelques responsables putatifs ont été proposés tels que l’excitotoxicité, le manque de neurotrophines, la compression mécanique, l’ischémie, les astrocytes réactifs et le stress oxidatif, parmis d’autres. Indépendamment de la cause, il est bien établi que la perte des cellules rétiniennes ganglionnaires lors du glaucome est causée par la mort cellulaire programmée apoptotique. Cependant, les mécanismes moléculaires précis qui déclenchent l’apoptose dans les cellules rétiniennes ganglionnaires adultes sont mal définis. Pour aborder ce point, j’ai avancé l’hypothèse centrale que l’identification de voies de signalisations moléculaires impliquées dans la mort apoptotique des cellules rétiniennes ganglionnaires offrirait des avenues thérapeutiques pour ralentir ou même prévenir la mort de celles-ci lors de neuropathies oculaires telles que le glaucome.
Dans la première partie de ma thèse, j’ai caractérisé le rôle de la famille de protéines stimulatrices d’apoptose de p53 (ASPP), protéines régulatrices de la famille p53, dans la mort apoptotique des cellules rétiniennes ganglionnaires. p53 est un facteur de transcription nucléaire impliqué dans des fonctions cellulaires variant de la transcription à l’apoptose. Les membres de la famille ASPP, soit ASPP1, ASPP2 et iASPP, sont des protéines de liaison de p53 qui régulent l’apoptose. Pourtant, le rôle de la famille des ASPP dans la mort des cellules rétiniennes ganglionnaires est inconnu. ASPP1 et ASPP2 étant pro-apoptotiques, l’hypothèse de cette première étude est que la baisse ciblée de ASPP1 et ASPP2 promouvrait la survie des cellules rétiniennes ganglionnaires après une blessure du nerf optique. Nous avons utilisé un modèle expérimental bien caractérisé de mort apoptotique neuronale induite par axotomie du nerf optique chez le rat de type Sprague Dawley. Les résultats de cette étude (Wilson et al. Journal of Neuroscience, 2013) ont démontré que p53 est impliqué dans la mort apoptotique des cellules rétiniennes ganglionnaires, et qu’une baisse ciblée de ASPP1 et ASPP2 par acide ribonucléique d’interference promeut la survie des cellules rétiniennes ganglionnaires.
Dans la deuxième partie de ma thèse, j’ai caractérisé le rôle d’iASPP, le membre anti-apoptotique de la famille des ASPP, dans la mort apoptotique des cellules rétiniennes ganglionnaires. L’hypothèse de cette seconde étude est que la surexpression d’iASPP promouvrait la survie des cellules rétiniennes ganglionnaires après axotomie. Mes résultats (Wilson et al. PLoS ONE, 2014) démontrent que le knockdown ciblé de iASPP exacerbe la mort apoptotique des cellules rétiniennes ganglionnaires, et que la surexpression de iASPP par virus adéno-associé promeut la survie des cellules rétiniennes ganglionnaires.
En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes régulateurs sous-jacents la perte de cellules rétiniennes ganglionnaires par apoptose et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices pour le traitement de maladies neurodégénératives telles que le glaucome. / Glaucoma is the leading cause of irreversible blindness worldwide. At present, there is no cure for glaucoma, and current therapies are often inadequate. Loss of vision in glaucoma results from the death of retinal ganglion cells, the neurons that send visual information from the retina to the brain. The principal mechanism leading to retinal ganglion cell damage during glaucoma is not well understood, however, putative culprits have been proposed including excitotoxicity, neurotrophin deprivation, mechanical compression, ischemia, reactive astrocytes and oxidative stress. It is well established that retinal ganglion cell loss during glaucoma is caused by apoptotic programmed cell death, however, the precise mechanisms that lead to apoptotic death of adult retinal ganglion cells are poorly defined. To address this point, I put forth the central hypothesis that the identification of signaling pathways involved in apoptotic retinal ganglion cell death would offer therapeutic avenues to slow or prevent retinal ganglion cell death during ocular neuropathies such as glaucoma.
In the first part of my thesis, I characterised the role of Apoptosis Stimulating Protein of p53 family (ASPP) proteins, which are regulators of p53, in the apoptotic death of retinal ganglion cells. p53 is a nuclear transcription factor implicated in cellular functions ranging from transcription to apoptosis. ASPP family members ASPP1, ASPP2 and iASPP are p53 binding proteins that belong to a family of protein regulators of p53-dependent apoptotic death. However, the role of ASPP family members in retinal ganglion cell death is unknown. As ASPP1 and ASPP2 are pro-apoptotic, the hypothesis of our first study was that the knockdown of ASPP1 and ASPP2 gene expression would lead to retinal ganglion cell survival after an optic nerve lesion. We used a well-characterized experimental model of neuronal apoptosis induced by optic nerve axotomy in Sprague Dawley rats. The results of this study (Wilson et al. Journal of Neuroscience, 2013) demonstrated that p53 is implicated in retinal ganglion cell death, and that targeted knockdown of ASPP1 and ASPP2 by short interference ribonucleic acid promotes retinal ganglion cell survival. The knockdown of ASPP2 correlates with a reduction in the levels of pro-apoptotic p53 regulated targets PUMA and Fas/CD95.
In the second part of my thesis, I characterized the role of the anti-apoptotic member of the ASPP family, iASPP, in the apoptotic death of retinal ganglion cells. The hypothesis of this second study is that the overexpression of iASPP would promote retinal ganglion cell survival after axotomy. The data (Wilson et al. PLoS ONE, 2014) demonstrate that the targeted knockdown of iASPP by short interference ribonucleic acid exacerbates retinal ganglion cell death, and that the overexpression of iASPP by adeno-associated virus promotes retinal ganglion cell survival. The overexpression of iASPP correlates with a reduction in protein levels of PUMA and Fas/CD95.
In conclusion, the findings presented in this thesis contribute to a better understanding of the pathological mechanisms underlying retinal ganglion cell loss by apoptosis and might provide insights into the design of novel neuroprotective treatments for neurodegenerative diseases such as glaucoma.
|
36 |
Neuron-Derived Semaphorin 3A is an Early Inducer of Vascular Permeability in Diabetic RetinopathyCerani, Agustin 12 1900 (has links)
La détérioration de la barrière hémato rétinienne et l'oedème maculaire consécutif est une manifestation cardinale de la rétinopathie diabétique (RD) et la caractéristique clinique la plus étroitement associée à la perte de la vue. Alors que l'oedème maculaire affecte plus de 25% des patients souffrant de diabète, les modalités de traitement actuellement disponibles tels que les corticostéroïdes administrés localement et les thérapies anti-VEGF récemment approuvés présentent plusieurs inconvénients. Bien que le lien entre une rupture de l’unité neuro-vasculaire et la pathogénèse de la RD ait récemment été établi, l’influence de la signalisation neuro-vasculaire sur la vasculopathie oculaire diabetique a jusqu’à présent reçu peu d’attention. Ici, à l’aide d’ètudes humaines et animales, nous fournissons la première preuve du rôle essentiel de la molécule de guidage neuronale classique Sémaphorine 3A dans l’instigation de la perméabilité vasculaire maculaire pathologique dans le diabète de type 1. L’étude de la dynamique d’expression de Sémaphorine 3A révèle que cette dernière est induite dans les phases précoces hyperglycèmiques du diabète dans la rétine neuronale et participe à la rupture initiale de la fonction de barrière endothéliale. En utilisant le modèle de souris streptozotocine pour simuler la rétinopathie diabétique humaine, nous avons démontré par une série d’approches analogue que la neutralisation de Sémaphorine 3A empêche de façon efficace une fuite vasculaire rétinienne. Nos résultats identifient une nouvelle cible thérapeutique pour l’oedème maculaire diabétique en plus de fournir d’autres preuves de communication neuro-vasculaire dans la pathogènese de la RD. / The deterioration of the blood retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. While macular edema affects over 25% of patients suffering from diabetes, currently available treatment modalities such as locally administered corticosteroids and recently approved anti-VEGF therapies, present several drawbacks. Although recent insight on the pathogenesis of DR points to a breakdown in the neurovascular unit, neurovascular cross-talk and its influence on diabetic ocular vasculopathy has thus far received limited attention. Here we provide the first evidence from both human and animal studies for the critical role of the classical neuronal guidance cue Semaphorin3A in instigating pathological macular vascular permeability in type I diabetes. Investigation of the dynamics of expression reveal that Semaphorin3A is induced in the early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function. Using the streptozotocin mouse model as a proxy for human diabetic retinopathy, we demonstrate by a series of orthogonal approaches (gene silencing or treatment with soluble Neuropilin-1 employed as a Semaphorin3A trap), that neutralization of Semaphorin3A efficiently prevents retinal vascular leakage. Our findings identify a new therapeutic target for DME and provide further evidence for neurovascular cross-talk in pathogenesis of DR.
|
37 |
Role of the ASPP Family in the Regulation of p53-Mediated Apoptotic Death of Retinal Ganglion Cells after Optic Nerve InjuryWilson, Ariel M. 02 1900 (has links)
Le glaucome est la première cause de cécité irréversible à travers le monde. À présent il n’existe aucun remède au glaucome, et les thérapies adoptées sont souvent inadéquates. La perte de vision causée par le glaucome est due à la mort sélective des cellules rétiniennes ganglionnaires, les neurones qui envoient de l’information visuelle de la rétine au cerveau. Le mécanisme principal menant au dommage des cellules rétiniennes ganglionnaires lors du glaucome n’est pas bien compris, mais quelques responsables putatifs ont été proposés tels que l’excitotoxicité, le manque de neurotrophines, la compression mécanique, l’ischémie, les astrocytes réactifs et le stress oxidatif, parmis d’autres. Indépendamment de la cause, il est bien établi que la perte des cellules rétiniennes ganglionnaires lors du glaucome est causée par la mort cellulaire programmée apoptotique. Cependant, les mécanismes moléculaires précis qui déclenchent l’apoptose dans les cellules rétiniennes ganglionnaires adultes sont mal définis. Pour aborder ce point, j’ai avancé l’hypothèse centrale que l’identification de voies de signalisations moléculaires impliquées dans la mort apoptotique des cellules rétiniennes ganglionnaires offrirait des avenues thérapeutiques pour ralentir ou même prévenir la mort de celles-ci lors de neuropathies oculaires telles que le glaucome.
Dans la première partie de ma thèse, j’ai caractérisé le rôle de la famille de protéines stimulatrices d’apoptose de p53 (ASPP), protéines régulatrices de la famille p53, dans la mort apoptotique des cellules rétiniennes ganglionnaires. p53 est un facteur de transcription nucléaire impliqué dans des fonctions cellulaires variant de la transcription à l’apoptose. Les membres de la famille ASPP, soit ASPP1, ASPP2 et iASPP, sont des protéines de liaison de p53 qui régulent l’apoptose. Pourtant, le rôle de la famille des ASPP dans la mort des cellules rétiniennes ganglionnaires est inconnu. ASPP1 et ASPP2 étant pro-apoptotiques, l’hypothèse de cette première étude est que la baisse ciblée de ASPP1 et ASPP2 promouvrait la survie des cellules rétiniennes ganglionnaires après une blessure du nerf optique. Nous avons utilisé un modèle expérimental bien caractérisé de mort apoptotique neuronale induite par axotomie du nerf optique chez le rat de type Sprague Dawley. Les résultats de cette étude (Wilson et al. Journal of Neuroscience, 2013) ont démontré que p53 est impliqué dans la mort apoptotique des cellules rétiniennes ganglionnaires, et qu’une baisse ciblée de ASPP1 et ASPP2 par acide ribonucléique d’interference promeut la survie des cellules rétiniennes ganglionnaires.
Dans la deuxième partie de ma thèse, j’ai caractérisé le rôle d’iASPP, le membre anti-apoptotique de la famille des ASPP, dans la mort apoptotique des cellules rétiniennes ganglionnaires. L’hypothèse de cette seconde étude est que la surexpression d’iASPP promouvrait la survie des cellules rétiniennes ganglionnaires après axotomie. Mes résultats (Wilson et al. PLoS ONE, 2014) démontrent que le knockdown ciblé de iASPP exacerbe la mort apoptotique des cellules rétiniennes ganglionnaires, et que la surexpression de iASPP par virus adéno-associé promeut la survie des cellules rétiniennes ganglionnaires.
En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes régulateurs sous-jacents la perte de cellules rétiniennes ganglionnaires par apoptose et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices pour le traitement de maladies neurodégénératives telles que le glaucome. / Glaucoma is the leading cause of irreversible blindness worldwide. At present, there is no cure for glaucoma, and current therapies are often inadequate. Loss of vision in glaucoma results from the death of retinal ganglion cells, the neurons that send visual information from the retina to the brain. The principal mechanism leading to retinal ganglion cell damage during glaucoma is not well understood, however, putative culprits have been proposed including excitotoxicity, neurotrophin deprivation, mechanical compression, ischemia, reactive astrocytes and oxidative stress. It is well established that retinal ganglion cell loss during glaucoma is caused by apoptotic programmed cell death, however, the precise mechanisms that lead to apoptotic death of adult retinal ganglion cells are poorly defined. To address this point, I put forth the central hypothesis that the identification of signaling pathways involved in apoptotic retinal ganglion cell death would offer therapeutic avenues to slow or prevent retinal ganglion cell death during ocular neuropathies such as glaucoma.
In the first part of my thesis, I characterised the role of Apoptosis Stimulating Protein of p53 family (ASPP) proteins, which are regulators of p53, in the apoptotic death of retinal ganglion cells. p53 is a nuclear transcription factor implicated in cellular functions ranging from transcription to apoptosis. ASPP family members ASPP1, ASPP2 and iASPP are p53 binding proteins that belong to a family of protein regulators of p53-dependent apoptotic death. However, the role of ASPP family members in retinal ganglion cell death is unknown. As ASPP1 and ASPP2 are pro-apoptotic, the hypothesis of our first study was that the knockdown of ASPP1 and ASPP2 gene expression would lead to retinal ganglion cell survival after an optic nerve lesion. We used a well-characterized experimental model of neuronal apoptosis induced by optic nerve axotomy in Sprague Dawley rats. The results of this study (Wilson et al. Journal of Neuroscience, 2013) demonstrated that p53 is implicated in retinal ganglion cell death, and that targeted knockdown of ASPP1 and ASPP2 by short interference ribonucleic acid promotes retinal ganglion cell survival. The knockdown of ASPP2 correlates with a reduction in the levels of pro-apoptotic p53 regulated targets PUMA and Fas/CD95.
In the second part of my thesis, I characterized the role of the anti-apoptotic member of the ASPP family, iASPP, in the apoptotic death of retinal ganglion cells. The hypothesis of this second study is that the overexpression of iASPP would promote retinal ganglion cell survival after axotomy. The data (Wilson et al. PLoS ONE, 2014) demonstrate that the targeted knockdown of iASPP by short interference ribonucleic acid exacerbates retinal ganglion cell death, and that the overexpression of iASPP by adeno-associated virus promotes retinal ganglion cell survival. The overexpression of iASPP correlates with a reduction in protein levels of PUMA and Fas/CD95.
In conclusion, the findings presented in this thesis contribute to a better understanding of the pathological mechanisms underlying retinal ganglion cell loss by apoptosis and might provide insights into the design of novel neuroprotective treatments for neurodegenerative diseases such as glaucoma.
|
38 |
ANALYSES OF THE DEVELOPMENT AND FUNCTION OF STEM CELL DERIVED CELLS IN NEURODEGENERATIVE DISEASES.pdfSailee Sham Lavekar (14152875) 03 February 2023 (has links)
<p>Human pluripotent stem cells (hPSCs) are an attractive tool for the study of different neurodegenerative diseases due to their potential to form any cell type of the body. Due to their versatility and self-renewal capacity, they have different applications such as disease modeling, high throughput drug screening and transplantation. Different animal models have helped answer broader questions related to the physiological functioning of various pathways and the phenotypic effects of a particular neurodegenerative disease. However, due to the lack of success recapitulating some targets identified from animal models into successful clinical trials, there is a need for a direct translational disease model. Since their advent, hPSCs have helped understand various disease effectors and underlying mechanisms using genetic engineering techniques, omics studies and reductionist approaches for the recognition of candidate molecules or pathways required to answer questions related to neurodevelopment, neurodegeneration and neuroregeneration. Due to the simplified approach that iPSC models can provide, some <em>in vitro</em> approaches are being developed using microphysiological systems (MPS) that could answer complex physiological questions. MPS encompass all the different <em>in vitro</em> systems that could help better mimic certain physiological systems that tend to not be mimicked by <em>in vivo</em> models. In this dissertation, efforts have been directed to disease model as well as to understand the intrinsic as well as extrinsic cues using two different MPS. First, we have used hPSCs with Alzheimer’s disease (AD)-related mutations to differentiate into retinal organoids and identify AD related phenotypes for future studies to identify retinal AD biomarkers. Using 5 month old retinal organoids from AD cell lines as well as controls, we could identify retinal AD phenotypes such as an increase in Aβ42:Aβ40 ratio along with increase in pTau:Tau. Nanostring analyses also helped in identification of potential target genes that are modulated in retinal AD that were related to synaptic dysfunction. Thus, using retinal organoids for the identification of retinal AD phenotypes could help delve deeper into the identification of future potential biomarkers in the retina of AD patients, with the potential to serve as a means for early identification and intervention for patients. The next MPS we used to serve to explore non-cell autonomous effects associated with glaucoma to explore the neurovascular unit. Previous studies have demonstrated the degeneration of RGCs in glaucoma due to a point mutation OPTN(E50K) that leads to the degeneration of RGCs both at morphological and functional levels. Thus, using the previous studies as a basis, we wanted to further unravel the impact of this mutation using the different cell types of the neurovascular unit such as endothelial cells, astrocytes and RGCs. Interestingly, we observed the barrier properties being impacted by the mutation present in both RGCs and astrocytes demonstrated through TEER, permeability and transcellular transport changes. We also identified a potential factor TGFβ2 that was observed to be overproduced by the OPTN E50K astrocytes to demonstrate similar effects with the exogenous addition of TGFβ2 on the barrier. Furthermore, the inhibition of TGFβ2 helped rescue some of the barrier dysfunction phenotypes. Thus, TGFβ2 inhibition can be used as a potential candidate that can be used to further study its impact in <em>in vivo</em> models and how that can be used in translational applications. Thus, MPS systems have a lot of applications that can help answer different physiologically relevant questions that are hard to approach using <em>in vivo</em> models and the further development of these systems to accentuate the aspects of neural development and how it goes awry in different neurodegenerative diseases. </p>
|
39 |
Unveiling the Impact of the “-opathies”: Axonopathy, Dysferopathy, and Synaptopathy in Glaucomatous Neurodegeneration.Smith, Matthew Alan January 2017 (has links)
No description available.
|
40 |
Le rôle de la protéine tau dans la mort des cellules ganglionnaires de la rétine : cas du glaucome et de la maladie d’AlzheimerChiasseu Mbeumi, Marius Trésor 12 1900 (has links)
La protéostasie désigne l’ensemble de stratégies développées par la cellule pour assurer la préservation de son protéome. Parmi celles-ci on peut citer le contrôle du repliement, de la concentration, et de la distribution des protéines. Les neurones en raison de leur importante activité métabolique représentent une population cellulaire particulièrement vulnérable à l’altération de la protéostasie, auquel cas on parle de protéinopathie. C’est notamment le cas des tauopathies et β-amyloidopathies, deux troubles neurodégénératifs, respectivement caractérisés par le dysfonctionnement de la protéine tau et du peptide amyloïde-β (Aβ). La protéine tau par le biais de son état de phosphorylation contrôle la stabilisation des microtubules, tandis que l’Aβ issu du clivage de l’APP (Amyloid Precursor Protein) serait impliqué dans la plasticité synaptique ; de telle sorte que l’altération du fonctionnement ou de la protéostasie de ces deux molécules engendre de graves troubles neuronaux.
Le glaucome, principale cause de cécité irréversible au monde, est une neuropathie dégénérative caractérisée par la perte spécifique des somas des cellules ganglionnaires de la rétine (CGR) et de leurs axones dans le nerf optique. Bien que l’hypertension oculaire (HTO) soit le principal facteur de risque, on ignore la cause du glaucome raison pour laquelle il n’existe aucun remède contre la maladie. La maladie d’Alzheimer (MA), principale cause de démence, est caractérisée par la présence d’enchevêtrement neurofibrillaires formés de la protéine tau dans les neurones et de plaques séniles constitué d’agrégats d’Aβ dans le parenchyme cérébral. De manière surprenante, de nombreuses études révèlent que le glaucome et la MA présentent de nombreux points communs. C’est ainsi que des agrégats d’Aβ et de tau ont été trouvés dans les CGR de sujets atteints du glaucome. De même les sujets victimes de la MA présentent des déficits visuels et une dégénérescence des CGR. Vu l’importance de tau pour la physiologie neuronale et son rôle de médiateur de la toxicité d’Aβ, nous proposons l’hypothèse selon laquelle le dysfonctionnement de la protéine tau résulte en la perte des CGR.
Les résultats présentés dans cette thèse reposent sur deux modèles expérimentaux de neurodégénérescence : un modèle de glaucome dépendant de HTO chez les rats (modèle de Morrison) et le modèle 3xTg de la MA chez lequel les souris expriment des mutations dans la protéine tau et la voie Aβ (PS1M146V, APPSWE, TauP301L). Chez ces animaux nous avons prélevé la rétine, le nerf optique et le cerveau, sur lesquels nous avons étudié l’expression, la distribution, et la neurotoxicité de tau par western blot, immunohistochimie et PCR quantitative. Nos résultats révèlent que comparativement aux contrôles sains, les rétines malades (glaucome et MA) présentent une accumulation de tau anormalement phosphorylée, tandis que son expression génique reste inchangée. Cette hausse de tau est la conséquence de sa relocalisation vers le compartiment somatodendritique et le segment axonal intrarétinien des CGR, ceci au détriment des axones myélinisés inclus dans le nerf optique. Nos données montrent que les CGR 3xTg présentent une baisse drastique du transport axonal antérograde, indiquant que l’altération de la distribution de tau pourrait être à la base de cette perte de fonction axonale. Finalement, nous démontrons que l’accumulation de tau dans la rétine malade provoque éventuellement la mort des CGR.
Au total, cette thèse démontre que les rétines atteintes du glaucome et de la MA présentent les manifestations cardinales des tauopathies à savoir l’accumulation, l’altération de la phosphorylation, et une distribution anormale de tau le tout culminant en la perte de fonction et la dégénérescence des CGR. / Proteostasis refers to a set of strategies developed by the cell to ensure the maintenance of
its proteome. These strategies include the control of protein folding, the amount, and the
distribution of the proteins. Neurons are endowed with a high metabolic rate and, as such, are
highly vulnerable to alterations in proteostasis, a situation referred to as proteinopathy.
Tauopathies and β-amyloidopathies are two such instances wherein tau and amyloid-β,
respectively, undergo dysfunction. Tau protein is a microtubule stabilising protein which
function is regulated by its phosphorylation state, while Aβ a product of the cleavage of APP
(Amyloid Precursor Protein) which is thought to be involved in the regulation of synaptic
plasticity. Therefore, functional or proteostatic alterations of these proteins result in harmful
consequences for neurons.
Glaucoma, the main cause of irreversible blindness, is a degenerative optic neuropathy
characterised by the selective loss of retinal ganglion cells (RGC) and their axons in the optic
nerve. Although ocular hypertension (OHT) is the main risk factor for the development of
glaucoma, the cause of the disease is still unknown. There is currently no cure for glaucoma and
the only available treatment is to reduce OHT pharmacologically or surgically. Alzheimer’s
disease, the main cause of dementia, is characterized by the presence of neurofibrillary tangles
made of tau protein in neurons and senile plaques made of Aβ in the cerebral parenchyma.
Intriguingly, several studies have shown that glaucoma and AD share several common features.
For instance, aggregates of tau and Aβ have been described in the retina of glaucoma subjects.
Likewise, AD patients show visual defects associated with RGC degeneration. Mindful of the
importance of tau for neuronal physiology, and of its role as mediator of Aβ toxicity, we put
forward the hypothesis that tau protein alterations leads to RGC dysfunction and death.
vii
The results presented in this thesis were based on two experimental models of
neurodegeneration: a model of OHT-dependent glaucoma in rats leading to RGC death
(Morrison model), and the 3xTg model of AD wherein mice overexpress mutant forms of tau and
Aβ (PS1M146V, APPSWE, TauP301L). Using these animals, we collected retina, optic nerve, and
brains which we used to study tau expression, distribution and neurotoxicity by western blot,
immunohistochemistry and real-time PCR. Our results show that, when compared to healthy
controls, the diseased retina (glaucoma or AD) display accumulation of abnormally
phosphorylated tau while its gene expression remains unchanged. The increase of retinal tau
protein might result from the redistribution of the protein in the somatodendritic compartment
and intraretinal axonal segment of RGCs at the expense of the extraocular axonal segment
enclosed within the optic nerve. Our data also demonstrate that RGCs from 3xTg mice show a
drastic reduction of anterograde axonal transport suggesting that missorted tau might underlie
these functional deficits. Lastly, we demonstrate that tau accumulation in the diseased retina
eventually promotes RGC death.
Altogether, this thesis demonstrates that the glaucomatous and AD retinas present the
cardinal features of tauopathies including tau accumulation, altered phosphorylation, and
mislocalization which contribute to RGC dysfunction and subsequent death.
|
Page generated in 0.1769 seconds