1 |
The Tectonic, Thermal and Magnetic Evolution of Icy SatellitesBland, Michael T January 2008 (has links)
Focusing on Ganymede and Enceladus, this work addresses a number of issues regarding icy satellite evolution, including the ultimate cause of Ganymede's tectonic and cryovolcanic resurfacing, the production of Ganymede's magnetic field, the formation of Ganymede's grooved terrain, and the tectonic and thermal evolution of Enceladus.Both Ganymede's resurfacing and the production of its magnetic field may be attributable to the Galilean satellites' passage through a Laplace-like resonance that excited Ganymede's orbital eccentricity. I examine how resonance passage effects Ganymede's thermal evolution using a coupled orbital-thermal model. Dissipation of tidal energy in Ganymede's ice shell permits high heat fluxes in its past, consistent with the formation of the grooved terrain; however, it also leads to the formation of a thin ice shell, which would have significant consequences for Ganymede's geologic history. In contrast, negligible tidal dissipation occurs in Ganymede's silicate mantle. Thus, passage through a Laplace-like resonance cannot reinvigorate Ganymede's metallic core or enable present-day magnetic field generation.Ganymede's thermal evolution has driven tectonic deformation on its surface, producing numerous swaths of ridges and troughs termed ``grooved terrain.'' Grooved terrain likely formed via unstable extension of Ganymede's lithosphere, but questions regarding instability growth at large strains remain unanswered. To address these questions, I use the finite-element model TEKTON to simulation the extension of an icy lithosphere to examine instability growth at finite strains. My results indicate that large-amplitude deformation requires lower thermal gradients than have been suggested by analytical models; however, the maximum deformation amplitudes produced by our numerical models are lower than typical observed groove amplitudes.Finally, I apply our finite-element modeling to the formation of ridges and troughs on Enceladus. Comparison between our models and photoclinometry profiles of Enceladus' topography indicate that the heat flux was high at the time of ridge and trough formation. Thus, the tectonic resurfacing and high heat fluxes currently observed at Enceladus' south pole may be only the latest episode in a long history of localized resurfacing and global reorientation.
|
2 |
Reconstruction du spectre UV solaire en vue de la caractérisation des environnements planétaires / Reconstruction of the solar spectral UV irradiance for the characterization of planetary atmospheresCessateur, Gael 17 October 2011 (has links)
La connaissance du flux UltraViolet (UV) solaire et de sa variabilité dans le temps est un problème clé aussi bien dans le domaine de l’aéronomie qu’en physique solaire. Alors que l’extrême UV, entre 10 et 121 nm, est important pour la caractérisation de l’ionosphère, l’UV entre 121 et 300 nm l’est tout autant pour les modélisations climatiques. La mesure continue de l’irradiance dans l’UV est cependant une tâche ardue. En effet, les instruments spatiaux étant dans un environnement hostile se dégradent rapidement. De nombreux modèles basés sur des indices solaires sont alors utilisées lorsque peu de données sont disponibles. Pourtant, l’utilisation de ces indices ne permet pas d’atteindre aujourd’hui une précision suffisante pour les différentes applications en météorologie de l’espace. Comme alternative, ce travail de thèse met en avant l’utilisation de bandes passantes pour reconstruire l’irradiance solaire dans l’UV. En utilisant des méthodes d’analyse statistique multivariée, ce travail met tout d’abord en évidence la forte cohérence de la variabilité spectrale de l’irradiance dans l’UV, ainsi que ses principales caractéristiques. Une première étape consiste à utiliser des bandes passantes existantes afin de tester la faisabilité de notre approche : le flux UV peut ainsi être reconstruit avec une erreur relative d’environ 20%, une bien meilleure performance qu’avec l’utilisation d’indices solaires. Afin de limiter les problèmes de dégradation liés à l’utilisation des filtres, nous proposons un instrument d’un genre nouveau basé uniquement sur des détecteurs à larges bande interdite permettant de sélectionner une bande spectrale (notamment pour l’UV à partir de 120 nm). Un tel radiomètre permettrait de reconstruire les raies spectrales importantes pour la spécification de la thermosphère terrestre avec une bonne précision. Enfin, une modélisation de l’impact du flux UV solaire sur l’atmosphère de Ganymède est exposée. Les émissions atmosphériques pour quelques espèces sont alors calculées, afin de proposer quelques recommandations pour les futures missions pour Jupiter. / The knowledge of the solar spectral irradiance in the UV and its variation in time is a key problem in aeronomy but also in climatology and in solar physics. While the Extreme UV (10-121 nm) range is important for thermosphere/ionosphere specification, the Far UV and Middle UV ranges are essential for climate modelling. However, the continuous monitoring of the UV irradiance is a difficult task. Space instruments are indeed suffering from ageing but also signal contamination of many kinds. Because of the lack of long-term measurements of the whole UV range, most thermosphere/ionosphere and climate models rely today on proxies for the solar irradiance, which may however not reflect very well the variability. As an alternative, we proposed in this work to use a few radiometers with properly chosen passbands in order to reconstruct the solar UV irradiance. Using a multivariate statistical approach, we first characterize the high redundancy as well as the different features of the solar UV irradiance. With four passbands from already existing instrument, we test our concept : the solar UV flux is reconstructed with a relative error of about 20%. This work proposes then to define a new kind of instrument, which may use wide bandgap materials as detectors selecting moreover the spectral range without using filters. Filters are indeed very sensitive to the degradation. This new instrument could reconstruct very well some spectral lines important to the Earth thermosphere specification. This thesis finally proposes to model the impact of the solar UV flux on the atmosphere of Ganymede. We predict some atmospheric emissions in the framework of future space mission to Jupiter.
|
3 |
Ganymede's magnetosphere : unraveling the Ganymede-Jupiter interaction through combining multi-fluid simulations and observations /Paty, Carol S. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 96-100).
|
4 |
De l’exosphère à la magnétosphère des objets planétaires faiblement magnétisés : optimisation de modélisations parallélisées pour une application à Ganymède / From exosphere to magnetosphere of planetary objects : optimization of parallelized modelisations for an application to GanymedeLeclercq, Ludivine 06 October 2015 (has links)
Ganymède, une lune de Jupiter, est le plus grand et le plus massif des satellites de notre système solaire. Cet objet a été observé depuis la Terre, notamment grâce au télescope Hubble (HST), et in situ par la sonde Galileo. Grâce à ces observations, une atmosphère très ténue, ou exosphère,principalement composée d'hydrogène, d'oxygène et d'oxygène moléculaire, a été détectée au voisinage de Ganymède. Ganymède est l'unique lune du système solaire possédant son propre champ magnétique intrinsèque, qui, en interagissant avec le plasma magnétosphérique jovien, génère unemini-magnétosphère. Cette magnétosphère est imbriquée dans celle de Jupiter. C'est le seul cas connu d'interaction entre deux magnétosphères. Galileo est l'une des seules sondes spatiales ayant investigué l'environnement complexe de Ganymède. La prochaine mission spatiale qui étudiera ce satellite estune mission européenne de l'ESA : JUICE (JUpiter ICy moon Exploration). Dans le cadre de cette mission, et dans un but de mieux connaître ce satellite, mon travail de thèse a consisté à modéliser l'environnement global neutre et ionisé de Ganymède.La première partie de mon travail de thèse a été consacrée à l'étude de l'exosphère de Ganymède à l'aide d'un modèle 3D Monte-Carlo. J'ai parallélisé ce modèle afin d'améliorer ses performances et d'enrichir la physique décrite par le modèle. Les résultats sont comparés à ceux d'autres modèles, ainsi que les observations effectuées par le HST et Galileo. L'environnement ionisé, en particulier la magnétosphère de Ganymède, a été ensuite étudié à l'aide d'un modèle hybride parallèle 3D, notamment en se plaçant dans les conditions d'observations de Ganymède par Galileo. Les résultats sont globalement cohérents avec les observations, et concordent avec ceux d'autres modèles, maismontrent néanmoins une nécessité d'améliorer significativement la résolution spatiale du modèle. De ce fait, une partie significative de mon travail de thèse a été dédiée au développement et à l'implémentation d'une approche multi-grilles au sein du modèle hybride, pour améliorer la résolution spatiale d'un facteur 2 dans le voisinage proche du satellite. Enfin, les résultats obtenus avec ce modèle optimisé sont confrontés aux observations de Galileo. / Jupiter’s moon Ganymede is the biggest and most massive satellite of our solar system. Thisobject has been observed from the Earth, with the Hubble Space Telescope (HST), and through in situ measurements by Galileo spacecraft. Thanks to these observations, a very tenuous atmosphere, or exosphere, has been detected at Ganymede. It is mainly composed of atomic hydrogen, atomic oxygen, and molecular oxygen. Ganymede is the only moon of the solar system to have its own intrinsic magnetic field, which generates a minimagnetosphere interacting with the magnetospheric jovian plasma. This magnetosphere is embedded in the jovian magnetosphere. It is the only known case of interaction between two magnetospheres. Galileo is the only mission that has investigated the complex ionized environment of Ganymede. The next space mission dedicated to investigate the Jovian magnetosphere and its galilean satellite is an European mission from ESA : JUICE (Jupiter ICy moons Explorer). In the frame of this mission, and to prepare future observations at Ganymede, my thesis work has consisted in modeling the global neutral and ionized environment of Ganymede. The first part of my thesis work has been dedicated to the study of Ganymede’s exosphere with a 3D Monte-Carlo model. I have parallelized this model to improve its performance and to enrich the physics described by the model. Results have been compared to those of other models, and to HST and Galileo observations. The ionized environment, in particular the magnetosphere of Ganymede, has then been studied with a 3D parallel hybrid model,considering the observation conditions of Galileo. Results are globally consistent with the observations and with other models, but show the necessity to significantly improve the spatial resolution. Therefore, a significant part of my work has been dedicated to the development of a multi-grid approach in the hybrid model, to divide by 2 the spatial resolution at the vicinity of Ganymede. Finally, results obtained with the optimized model are compared to Galileo observations.
|
5 |
The Effects of Melt on Impact Craters on Icy Satellites and on the Dynamics of Io's InteriorElder, Catherine Margaret January 2015 (has links)
Over the last fifty years, our knowledge of the Solar System has increased exponentially. Many planetary surfaces were seen for the first time through spacecraft observations. Yet the interiors of most planetary bodies remain poorly studied. This dissertation focuses on two main topics: the formation of central pit craters and what this reveals about the subsurface volatile content of the target material, and the mantle dynamics of Io and how they relate to the extensive volcanism on its surface. Central pit craters are seen on icy satellites, Mars, the Moon, and Mercury. They have terraced rims, flat floors, and a pit at or near their center. Several formation mechanisms have been suggested. This dissertation assesses the feasibility of central pit crater formation via drainage of impact melt through impact-generated fractures. For impacts on Ganymede, the expected volume of melt and volume of fracture space generated during the impact and the volume of melt able to drain before fractures freeze shut all exceed the observed central pit volumes on Ganymede. This suggests that drainage of impact melt could contribute to central pit crater formation on Ganymede. Molten rock draining through solid rock fractures will freeze shut more rapidly, so this work suggests that impact melt drainage is unlikely to be a significant factor in the formation of central pit craters on rocky bodies unless a significant amount of volatiles are present in the target. Io is the most volcanically active body in the Solar System. While volcanoes are most often associated with plate tectonics on Earth, Io shows no signs of plate tectonics. Previous work has suggested that Io could lose a significant fraction of its internal heat through volcanic eruptions. In this dissertation, I investigate the relationship between mantle convection and magma generation, migration by porous flow, and eruptions on Io. I couple convective scaling laws to a model solving the two-phase flow equations applied to a rising column of mantle. I show that Io has a partially molten upper mantle and loses the majority of its internal heat through volcanic eruption. Next, I present two-dimensional numerical simulations that self-consistently solve the two-phase flow equations including mantle convection and magma generation, migration by porous flow, and eruption. These simulations produce a high heat flux due to volcanic eruption, a thick lithosphere, a partially molten upper mantle, and a high eruption rate—all consistent with observations of Io. This model also reveals the eruption rate oscillates around the statistical steady state average eruption rate suggesting that the eruption rate and total heat flux measurements from the past 35 years may not be representative of Io's long term behavior.
|
6 |
Uncovering local magnetospheric processes governing the morphology and periodicity of Ganymede’s aurora using three-dimensional multifluid simulations of Ganymede’s magnetospherePayan, Alexia Paule Marie-Renee 08 April 2013 (has links)
The electrodynamic interaction of Ganymede’s mini-magnetosphere with Jupiter’s corotating magnetospheric plasma has been shown to give rise to strong current systems closing through the moon and its ionosphere as well as through its magnetopause and magnetotail current sheet. This interaction is strongly evidenced by the presence of aurorae at Ganymede and of a bright Ganymede footprint on Jupiter’s ionosphere. This footprint is located equatorward of the main auroral emissions, at the magnetic longitude of the field line threading Ganymede. The brightness of Ganymede’s auroral footprint at Jupiter along with its latitudinal position have been shown to depend on the position of Ganymede relative to the center of the Jovian plasma sheet. Additionally, observations using the Hubble Space Telescope showed that Ganymede’s auroral footprint brightness is characterized by variations of three different timescales: 5 hours, 10-40 minutes, and ~100 seconds. The goal of the present study is to examine the relationship between the longest and the shortest timescale periodicities of Ganymede’s auroral footprint brightness and the local processes occurring at Ganymede. This is done by coupling a specifically developed brightness model to a three-dimensional multifluid model which tracks the energies and fluxes of the various sources of charged particles that precipitate into Ganymede’s ionosphere to generate the aurora. It is shown that the predicted auroral brightnesses and morphologies agree well with observations of Ganymede’s aurora from the Hubble Space Telescope. Our results also suggest the presence of short- and long-period variabilities in the auroral emissions at Ganymede due to magnetic reconnections on the magnetopause and in the magnetotail, and support the hypothesis of a correlation between the variability of Ganymede’s auroral footprint on Jupiter’s ionosphere and the variability in the brightness and morphology of the aurora at Ganymede. Finally, the modeled aurora at Ganymede reveals that the periodicities in the morphology and brightness of the auroral emissions are produced by two different dynamic reconnection mechanisms. The Jovian flow facing side aurora is generated by electrons sourced in the Jovian plasma and penetrating into Ganymede’s ionosphere through the cusps above the separatrix region. In this case, the reconnection processes responsible for the auroral emissions occur on Ganymede’s magnetopause between the Jovian magnetic field lines and the open magnetic field lines threading Ganymede’s Polar Regions. As for the magnetotail side aurora, it is generated by electrons originating from Ganymede’s magnetospheric flow. These electrons are accelerated along closed magnetic field lines created by magnetic reconnection in Ganymede’s magnetotail, and precipitate into Ganymede’s ionosphere at much lower latitudes, below the separatrix region.
|
7 |
Clatratos Hidratos de Gas en Condiciones Extremas / Clathrates hydrates de gaz sous conditions extrêmes / Gas Clathrate Hydrates under extreme conditionsIzquierdo Ruiz, Fernando 04 July 2018 (has links)
Ce document contient un rapport scientifique résultant de plus de quatre années de recherche théorique et expérimentale sur un type particulier de systèmes physico-chimiques appelés hydrates de clathrates de gaz. Ces systèmes sont des composés d'inclusion constitués d'un cadre aqueux tridimensionnel contenant des molécules de gaz avec de faibles moments dipolaires dans leurs cavités. Les hydrates de clathrate de gaz sont très importants dans une grande variété de domaines scientifiques liés aux sciences de la vie ou à la planétologie, et ils sont également considérés comme une ressource naturelle principale pour l'industrie de l'énergie. Habituellement, les hydrates de clathrate de gaz nécessitent une pression élevée et une température basse pour être thermodynamiquement stables. En fonction de ces conditions, différentes phases ont été détectées, les plus courantes étant les structures cubiques sI et sII, la sH hexagonale et la structure de glace remplacée orthorhombique (FIS). Notre étude a considérablement progressé dans la connaissance du comportement du méthane et des hydrates de clathrate de dioxyde de carbone dans différentes conditions de pression et de température. En particulier, nous avons contribué à : (i) la détermination et la compréhension des régions thermodynamiques de stabilité, (ii) la caractérisation d'une structure haute pression controversée et (iii) la mise en place d'un nouvel équipement expérimental pour les mesures Raman dans une gamme de pression jusqu'à 1 GPa [...] / This document contains a scientific report resulting from more than four years of theoretical and experimental research on a particular kind of physicochemical systems called gas clathrate hydrates. These systems are inclusion compounds constituted by a three dimensional water framework hosting gas molecules with low dipolar moments in its cavities. Gas clathrate hydrates are very important in a great variety of scientific fields related to life sciences or planetology, and they are also considered as a main natural resource for the energy industry. Usually, gas clathrate hydrates need high pressure and low temperature to be thermodynamically stable. Depending on these conditions, differentphases have been detected being the most common ones the cubic structuressI and sII, the hexagonal sH, and the orthorhombic Filled Ice Structure(FIS). Our study has substantially advanced in the knowledge of the behaviorof methane and carbon dioxide clathrate hydrates under different pressure andtemperature conditions. In particular, we have contributed to: (i) the determination and understanding of stability thermodynamic regions, (ii) the characterizationof a controversial high-pressure structure, and (iii) setting up a new experimental equipment for Raman measurements in a pressure range up to 1 GPa [...] / Este documento contiene el informe científico resultante después de más de cuatro años de investigación teórica y experimental sobre un tipo particular de sistemas físico-químicos llamados clatratos hidratos de gas. Estos sistemas son compuestos de inclusión constituidos por un armazón tridimensional de agua que aloja en sus cavidades moléculas de gas con momentos dipolares bajos.Los clatratos hidratos de gas son muy importantes en una gran variedad de campos científicos relacionados con las ciencias de la vida o la planetología, y también se consideran como uno de los principales recursos naturales para la industria energética. Por lo general, los clatratos hidratos de gas necesitan alta presión y baja temperatura para ser termodinámicamente estables.Dependiendo de estas condiciones, se han detectado diferentes fases siendo las más comunes las estructuras cúbicas sI y sII, hexagonal sH y la estructura ortorrómbica de hielo relleno (FIS). Nuestro estudio ha avanzado sustancialmente en el conocimiento del comportamiento de los clatratos hidratos de metano y dióxido de carbono en diferentes condiciones de presión y temperatura, proporcionando (i) regiones termodinámicas de estabilidad, (ii) la caracterización de una estructura de alta presión controvertida y (iii) un nuevo equipo experimental para mediciones Raman en un rango de presión de hasta 1 GPa [...]
|
8 |
Sächsische UbiquitätPeters, Friedrich Ernst January 2012 (has links)
Humorvolle Schilderung einer Alltagsszene im Dresdener Museum vor Rembrandts Bild „Ganymed in den Fängen des Adlers“ mit geistreichem Brückenschlag zu Langbehns „Rembrandt als Erzieher“ (1890).
|
9 |
Spectroscopic identification of water-oxygen and water-hydroxyl complexes and their importance to icy outer solar system bodiesCooper, Paul January 2005 (has links)
This thesis studies hydrated oxygen and hydroxyl radicals as a basis for understanding the species formed in the icy surfaces of outer solar system bodies. Infrared spectroscopy is used to identify the species water-oxygen (H2O·O2) and water-hydroxyl (H2O·HO) complexes in inert gas matrices and presents a new mechanism for O2 formation in irradiated ices. The H2O·O2 Complex -- The H2O·O2 complex was identified in solid argon matrices at 11 K by measuring the infrared spectra of H2O⁄O2⁄Ar matrices. Absorption bands at 3731.6, 3638.3, 1590.2⁄1593.6 and 1551.9⁄1548.8 cm-1 were respectively assigned to asymmetric OH water stretching, symmetric OH water stretching, H2O bending, and the O2 stretching vibrations. This experimental data was in good agreement with the results of quantum mechanical calculations that predict the vibrational frequencies and intensities for H2O·O2. These calculations gave a binding energy of 0.72 kcal mol-1 for the complex. The H2O·HO Complex -- The H2O·HO complex was identified in solid argon matrices at 11 K by measuring the infrared spectra of OH⁄H2O⁄Ar matrices. The OH was formed in a Tesla coil discharge of an H2O⁄Ar gas stream. This gas stream also provided the source of H2O and Ar needed for the experiments. Three absorption bands were assigned to the OH stretch of the hydroxyl group in the complex. These three bands were caused by the occupancy of three different lattice sites. This experimental data was in good agreement with quantum mechanical calculations that predict the vibrational frequencies and intensities for H2O·HO. These calculations gave a binding energy of 5.69 kcal mol-1 for the complex. O2 Formation in Irradiated Ice -- A new mechanism for O2 formation in irradiated ice is presented. This mechanism draws on experimental evidence in the literature to explain the observations of solid O2 on or near the surface of the icy Galilean satellites, Europa and Ganymede. It is proposed that on these bodies, hydrogen peroxide, formed from the radiolysis and photolysis of the ice, is present in highly localized aggregates that hinder O2 diffusion out of the icy surface into the tenuous atmosphere. Further radiolysis and photolysis of these hydrogen peroxide aggregates can then lead to O2 formation via the formation of a short lived water-oxygen atom complex, H2O·O. The O atoms of a pair of these complexes then react rapidly to form O2
|
10 |
Spacecraft-Plasma Interaction Modelling of Future Missions to JupiterRudolph, Tobias January 2012 (has links)
As an orbiter cruising to Jupiter will encounter different plasma environments, variety of spacecraft surface charging is expected. This surface potential can lead to inaccurate and wrong in-situ plasma measurements of on-board sensors, which explain the interest in simulating the charging.In this thesis the spacecraft-plasma interactions for a future mission to Jupiter are modelled with the help of the Spacecraft Plasma Interaction System, taking the case of a Jupiter Ganymede Orbiter (JGO) and a Jupiter Europa Orbiter (JEO) as an archetype for a future mission.It is shown that in solar wind at Earth and Jupiter, spacecraft potentials of about 8 V for the JEO, and 10 V to 11 V for the JGO are expected. Furthermore, at a distance of 15 Jupiter radii from Jupiter, the JGO is expected to charge to an electric potential of 2 V, except in the planetary shadow, where it will charge to a high negative potential of -40 V. Moreover, close to the orbit of Callisto, JGO will charge to 12 V in the sun and to 4.6 V in eclipse, due to a high secondary electron emission yield. / <p>Validerat; 20120115 (anonymous)</p>
|
Page generated in 0.0275 seconds