• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 21
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 241
  • 241
  • 122
  • 108
  • 53
  • 39
  • 37
  • 33
  • 33
  • 28
  • 25
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Synthetic Two-Dimensional Materials: A New Paradigm of Membranes for Ultimate Separation

Zheng, Zhikun, Grünker, Ronny, Feng, Xinliang 07 May 2018 (has links)
Microporous membranes act as selective barriers and play an important role in industrial gas separation and water purification. The permeability of such membranes is inversely proportional to their thickness. Synthetic two-dimensional materials (2DMs), with a thickness of one to a few atoms or monomer-units are ideal candidates for developing separation membranes. In this Progress Report, we present groundbreaking advances in the design, synthesis, processing, and application of 2DMs for gas and ion separations, as well as water desalination. After the introduction in Section 1, this report describes the syntheses, structures, and mechanical properties of 2DMs in Section 2. In Section 3, we will discuss the established methods for processing 2DMs into selective permeation membranes and address the separation mechanism and their performances. Finally, current challenges and emerging research directions, which need to be addressed for developing next generation separation membranes, are summarized in the Conclusion and Perspective.
232

Bikontinuierliche Kompositmembranen: Untersuchung ihrer Permeanzen bei höheren Temperaturen und ihr Einsatz zur Gastrocknung

Reinhardt, Lutz 14 August 2019 (has links)
Gegenstand dieser Arbeit ist es, die Temperaturbeständigkeit von bikontinuierlichen Kompositmembranen bestehend aus Zeolith 4A und Visiomer HEMATMDI zu überprüfen und das Verhalten ihrer Permeanz im Verlauf der Temperaturerhöhung zu untersuchen. Weiterhin wird ihre Verwendbarkeit für technisch und industriell relevante Prozesse der Gastrocknung nachgewiesen. Zunächst wird thermogravimetrisch untersucht, bei welcher Temperatur Zersetzungserscheinungen an der polymeren Komponente auftreten. Anschließend wird thermogravimetrisch der Wassergehalt von Zeolith 4A im Bereich dieser Temperatur bestimmt. Hierauf folgen Permeationsmessungen mit Sauerstoff und Stickstoff an der bikontinuierlichen Kompositmembran. Die Temperatur wird hierbei schrittweise bis knapp unter die Zersetzungstemperatur des Polymers erhöht. Die Eignung der Membranen zur Gastrocknung wird exemplarisch an der Trocknung von Erdgas gezeigt. Es werden die Permeanzen für Wasserdampf und Methan als Hauptbestandteil von Erdgas mittels Einzelgasmessungen experimentell bestimmt. Aus diesen Permeanzen errechnet sich die ideale Selektivität der bikontinuierlichen Kompositmembran von Wasserdampf gegenüber Methan. Mit ihrer Hilfe lässt sich die Eignung der Membran zur Trocknung von Erdgas abschätzen. / The aim of this work is to study the temperature resistance of bicontinuous composite membranes, composed zeolite 4A and Visiomer HEMATMDI, and their permeances with rising temperatures. Furthermore their suitability for gas drying is investigated.
233

[en] SYNTHESIS AND CHARACTERIZATION OF MIXED MATRIX MEMBRANES BASED ON IONIC LIQUID DISPERSION IN POLYURETHANE OR PEBAX FOR CO2/N2 SEPARATION / [pt] SÍNTESE E CARACTERIZAÇÃO DE MEMBRANAS DE MATRIZES MISTAS BASEADAS EM DISPERSÃO DE LÍQUIDO IÔNICO EM POLIURETANO OU PEBAX PARA SEPARAÇÃO DE CO2/N2

ANA CAROLINE ALVES FELIPE 22 August 2022 (has links)
[pt] A implementação de medidas que reduzam as emissões de gases de efeito estufa ganha importância no cenário atual. Um importante método para captura de CO2 consiste nos processos de separação por membranas. Visando melhorar a eficiência seletiva na separação de gases, este trabalho estudou a síntese de membranas poliméricas de matrizes mistas a fim de aumentar os valores de permeabilidade, utilizando líquidos iônicos em sua estrutura, que apresentam elevada solubilidade de CO2 e seletividade. A síntese do líquido iônico foi realizada a partir do cátion imidazólico e do ânion NTf2(-) , em reações de 3 etapas. Os filmes poliméricos de matrizes mistas foram sintetizados por diferentes tipos de polímeros comerciais, PEBAX 1657, PEBAX2533 e PU 1185A10; com concentrações de 0 por cento, 20 por cento e 60 por cento (m/m) do líquido iônico. A técnica de ressonância magnética nuclear (RMN) de (1)H e (13)C foi utilizada para validar a composição do líquido iônico. As caracterizações de membranas compósitas se deram pelas técnicas de microscopia eletrônica de varredura (MEV), análise termogravimétrica (TGA) e espectroscopia de infravermelho com transformada de Fourier (FTIR). Na presença do líquido iônico, a seletividade relativa de CO2/N2 apresentou um aumento considerável para as membranas de PU e PEBAX2533, enquanto a permeabilidade de CO2 aumentou nas membranas de PU e PEBAX1657. / [en] The measures to reduce greenhouse gas emissions, gains more importance in the current scenario. Processes involving membrane separation are an important method for CO2 capture which are widely used. In order to improve the selective efficient in the gas separation this paper studies the development and synthesis of composite polymeric membranes that will be able to increase the permeability using ionic liquids in your structure, which have high CO2 solubility and selectivity. The ionic liquid synthesis was obtained using imidazolium cation and the NTf2(-) anion, on 3 steps reactions. The composite polymeric membranes were synthesized by different types of commercial polymers, PEBAX1657, PEBAX2533 and PU 1185A10; with 0 percent, 20 percent and 60 percent (wt.) concentrations of ionic liquid. The nuclear magnetic resonance (NMR) technique for 1H and 13C was used to validate the ionic liquid structure. The composite membrane characterizations were obtained by those techniques: scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR). In the presence of ionic liquid, the selectivity of CO2/N2 increased for the PU and PEBAX2533 membranes, and the permeability of CO2 increased for the PU and PEBAX1657 membranes.
234

[pt] DESENVOLVIMENTO DE MODELOS 3D PARA AVALIAÇÃO DE MÓDULOS DE MEMBRANA NA SEPARAÇÃO DE CO2 DO GÁS NATURAL NO PRÉ-SAL BRASILEIRO / [en] DEVELOPMENT OF 3D MODELS FOR THE ASSESSMENT OF MEMBRANE MODULES IN THE SEPARATION OF CO2 FROM NATURAL GAS IN THE BRAZILIAN PRE-SALT

BRUNO WELLAUSEN CANARIO 05 December 2023 (has links)
[pt] Devido a sua ampla gama de aplicações, o gás natural ocupa papel importante na matriz energética global. No Brasil, a descoberta do pré-sal transformou a história do país em relação a exploração de óleo e gás. Porém, o gás lá encontrado possui grandes quantidades de CO2 associado, que requerem remoção por existirem normas da ANP que limitam o gás natural comercializado a 3 por cento mol. Diversas tecnologias se mostraram capazes de realizar essa remoção, porém para altas quantidades de CO2, a tecnologia de membranas vem sendo destaque nas plataformas offshore de extração de petróleo. Seu reduzido footprint é um grande atrativo, devido ao espaço limitado das plataformas. O presente trabalho compara a área e volume ocupados e os pesos totais dos arranjos 3D de módulos de membranas fibra oca e espiral para a separação de CO2 do gás natural no pré-sal brasileiro. Para isso, foram construídas maquetes 3D no software Solidworks (marca registrada), baseando-se em dados de plantas reais offshore em operação e dados disponibilizados pelos principais fornecedores dos módulos de membrana, para tentar alcançar valores mais próximos da realidade. Foi constatado que os módulos fibra oca apresentam grande vantagem sobre os espirais em relação a área do módulo individual (8.340,91 m2 vs 26,24 m2 ) e ao número de módulos necessários (48 vs 15.120), e também em relação às plantas completas, tanto em área e volume, quanto em peso. Uma planta completa de módulos fibra oca ocuparia apenas 7,75 por cento do volume da planta de módulos espirais. O peso da primeira totalizaria 38,42 t em oposição a 765,62 t da segunda planta. / [en] Due to its wide range of applications, natural gas plays an important role in the global energy matrix. In Brazil, the discovery of the pre-salt transformed the country s history in relation to oil and gas exploration. However, the gas found there has large amounts of associated CO2, which require removal because there are ANP standards that limit commercialized natural gas to 3 percent mol. Several technologies have proven capable of achieving this removal, but for high amounts of CO2, membrane technology has been on the spotlight on offshore oil extraction platforms. Its reduced footprint is a major attraction, due to the limited space on the platforms. The present work compares the occupied area and volume and the total weights of 3D arrangements of hollow fiber and spiral wound membrane modules for the separation of CO2 from natural gas in the Brazilian pre-salt. To achieve this, 3D models were built in Solidworks (trademark) software, based on real offshore plants in operation and data provided by leading membrane module suppliers, in an attempt to achieve results closer to reality. It was found that hollow fiber modules offer significant advantages over spiral wound modules in relation to the membrane area of the individual module (8,340.91 m2 vs 26.24 m2 ) and the number of modules required (48 vs 15,120), and also in relation to complete plants, both in area and volume, as well as in weight. A complete hollow fiber module plant would occupy only 7.75 percent of the volume of the spiral wound module plant. The weight of the first would total 38.42 t as opposed to 765.62 t of the second plant.
235

Synthesis and Characterization of Novel Pol(arylene ethers) for Gas Separation and Water Desalination Membranes

Narang, Gurtej Singh 19 June 2018 (has links)
This thesis focuses on the synthesis and characterization of various poly(arylene ether)s to improve the efficiency of gas separation and water desalination membranes. This class of polymers includes polymers such as poly(arylene ether sulfone), poly(arylene ether ketone) and poly(phenylene oxide) which offer excellent thermal and mechanical stability and usually have high enough rigidity to support gas separation and water desalination operations. Besides the plethora of properties offered by the homopolymers, these polymers can also be post-modified to cater to specific needs. For example, the polyphenylene oxides have been brominated to increase the permeability for gas separation applications. Blending is another viable method to impart desirable properties to polymers. Bisphenol A based poly(arylene ether ketone) (BPAPAEK) has been blended with commercially available poly(2,6-dimethylphenylene oxide)s (PPO) of different molecular weights in a fixed ratio (66/34 wt/wt) and in various ratios of a 22000 g/mol PPO. All the blends were UV crosslinked to minimize plasticization by condensable gases and analyzed for gel fractions, whereas, only the 22,000 g/mol blends were tested for transport properties since they yielded the highest gel fractions and exhibited the best mechanical properties. The crosslinking reduced the free volume and improved the selectivity with some drop in permeability. The blends with 90% of the 22000 g/mol PPO by weight was plotted closest to the upperbound. A phosphine oxide based poly(arylene ether ketone) (POPAEK) was blended with the various PPOs in a similar manner. The results were compared to the BPAPAEK based blends in terms of miscibility behavior and transport properties. It was found that the POPAEK based blends had higher permeability due to the higher fractional free volumes of the POPAEK. The POPAEK was more compatible with the PPOs than BPAPAEK as seen by analyzing various blend permeability models, mechanical properties and scanning electron microscope images. Moreover, blends with both the PAEKs displayed only a small drop in mechanical properties, such as the Young's modulus and the yield strength in comparison to the parent polymers. Hydroquinone based poly(arylene ether sulfone) oligomers were synthesized, post-sulfonated and chemically crosslinked to determine the effect of water uptake, fixed charge concentration and block length of oligomers on the salt permeability and the hydrated mechanical properties of the networks. The sulfonic acid groups were placed strategically and quantitatively on the hydroquinone units. The strategic placement of the acid groups may help in maintaining high rejection of monovalent ions in the presence of divalent ions, as shown in unpublished work by our group. It was found that the water uptake and fixed charge density had the opposite effects on the salt permeability. Also, the salt permeability varied differently for 5000g/mol and 10000g/mol block based networks. Another polymer that was investigated in this thesis was poly(2-ethyl-2-oxazoline) (PEtOx). An elaborate account of synthesis of monofunctional, heterobifunctional and telechelic poly(2-ethyl-2-oxazoline)s using different initiators including methyl triflate, activated alkyl halides (e.g., benzyl halides), and non-activated alkyl halides has been presented in this thesis. Endgroup functionalities and molecular weight distributions were studied by SEC, 1H NMR and titrations. The oligomers initiated with the benzyl or xylyl chloride had a PDI of 1.3-1.4 which is broader than expected for a living cationic ring opened polymer. This was attributed to the participation of covalent species which propagated slowly in the activated halide reactions. These oligomers were quantitatively terminated as proven by NMR and titrations. Due to the molecular weight distributions and quantitative termination these oligomers were deemed to be desirable for drug delivery applications. / PHD / This work pivots around the synthesis and characterization of different classes of polymers which are long molecules made by joining small molecules. The structure-property relationships of different polymers with respect to applications such as gas separation, water desalination and drug delivery were examined. The first two projects were focused of gas separation applications. Gas separation is an essential process used to recover the required gas from a mixture of gases. This process is used in a number of industries such as natural gas, hydrogen recovery and air dehumidification. In these projects, gas separation membranes were used to remove non combustible components of natural gas such as carbon dioxide and hydrogen sulfide. Two different types of poly(arylene ether ketone)s (PAEKs) (a kind of polymer) were blended with a commercial polymer called poly(phenylene oxide) (PPO) and crosslinked at the surfaces to improve the gas transport properties of the commercial polymer. PPOs have high gas permeability and a low selectivity. In other words even though the PPO membranes would alow the gasses to pass through easily, the efficiency of gas separation would be low. The blending with the PAEKs improved the selectivity of the PPOs without much loss in throughput. These blends of the two different PAEKs were compared for transport and other relavent properties. It was found that the transport properties of the commercial polymer were improved markedly without much loss in mechanical properties which are usually sacrificed upon blending of two uncomaptible polymers. Water desalination applications were looked into for a polymer class called polysulfones. About 40% of the world’s population lives in water stressed areas. In order to address the water crisis, there is a need to look beyond primitive methods such as distillation which are inefficient. Hence, the polymeric membrane separations which do not involve phase change (eg liquid to gas and then back to liquid in distillation) were examined. The currently used polyamide membranes have a rough surface because of the way they are made, making them prone to deposition of salt and organic matter. This deposition makes them inefficient. They are also prone to degradation by chlorine. The polysulfones membranes have a smoother surface less prone to these depositions. Their resistance to chlorine makes them more viable for water desalination applications. The polysulfones were post modified to introduce charges to make them more suitable for water desalination purposes. The charges repelled the ions of same polarity and made the polymer more hydrophilic. However, as the number of charges increased, the water uptake of the polymer increased which resulted in a decrease in the effectiveness of salt /ion rejection. To increase the charge density of the polymers by (the effectiveness of ion rejection), the polymer chains were crosslinked at the ends. For deleniating the structure property relationships, the amount of charges were varied and two sets of chain lengths were studied. The salt permeability decreased with increase in fixed charge concentration and decrease in water uptake. Poly(2-Oxazolines), were investigated as potential drug delivery vehicles. Polymeric drug delivery vehicles have been used to control the rate of release of drugs in the body to avoid side effects. Another advantage of polymeric drug delivery systems is making the water insoluble drugs more compatible with the fluids in the body. Currently, polyethylene oxides are being used as drug delivery vehicles. However, these polymers have been known to produce antibodies in some people. In this work, poly(2-oxazolines) which are known to be more compatible with human body than PEOs were prepared using different initiators and end cappers to prepare an elaborate repertoire of controlled molecular weight and controlled functionality oligomers for further modification.
236

Novel gas-separation membranes for intensified catalytic reactors

Escorihuela Roca, Sara 20 May 2019 (has links)
[ES] La presente tesis doctoral se centra en el desarrollo de nuevas membranas de separación de gases, así como su empleo in-situ en reactores catalíticos de membrana para la intensificación de procesos. Para este propósito, se han sintetizado varios materiales, como polímeros para la fabricación de membranas, catalizadores tanto para la metanación del CO2 como para la reacción de síntesis de Fischer-Tropsch, y diversas partículas inorgánicas nanométricas para su uso en membranas de matriz mixta. En lo referente a la fabricación de las membranas, la tesis aborda principalmente dos tipos: orgánicas e inorgánicas. Con respecto a las membranas orgánicas, se han considerado diferentes materiales poliméricos, tanto para la capa selectiva de la membrana, así como soporte de la misma. Se ha trabajado con poliimidas, puesto que son materiales con temperaturas de transición vítrea muy alta, para su posterior uso en reacciones industriales que tienen lugar entre 250-300 ºC. Para conseguir membranas muy permeables, manteniendo una buena selectividad, es necesario obtener capas selectivas de menos de una micra. Usando como material de soporte otro tipo de polímero, no es necesario estudiar la compatibilidad entre ellos, siendo menos compleja la obtención de capas finas. En cambio, si el soporte es de tipo inorgánico, un exhaustivo estudio de la relación entre la concentración y la viscosidad de la solución polimérica es altamente necesario. Diversas partículas inorgánicas nanométricas se estudiaron para favorecer la permeación de agua a través de los materiales poliméricos. En segundo lugar, en cuanto a membranas inorgánicas, se realizó la funcionalización de una membrana de paladio para favorecer la permeación de hidrógeno y evitar así la contaminación por monóxido de carbono. El motivo por el cual se dopó con otro metal la capa selectiva de la membrana metálica fue para poder emplearla en un reactor de Fischer-Tropsch. Con relación al diseño y fabricación de los reactores, durante esta tesis, se desarrolló el prototipo de un microreactor para la metanación de CO2, donde una membrana polimérica de capa fina selectiva al agua se integró para evitar la desactivación del catalizador, y a su vez desplazar el equilibrio y aumentar la conversión de CO2. Por otro lado, se rediseñó un reactor de Fischer-Tropsch para poder introducir una membrana metálica selectiva a hidrogeno y poder inyectarlo de manera controlada. De esta manera, y siguiendo estudios previos, el objetivo fue mejorar la selectividad a los productos deseados mediante el hidrocraqueo y la hidroisomerización de olefinas y parafinas con la ayuda de la alta presión parcial de hidrógeno. / [CA] La present tesi doctoral es centra en el desenvolupament de noves membranes de separació de gasos, així com el seu ús in-situ en reactors catalítics de membrana per a la intensificació de processos. Per a aquest propòsit, s'han sintetitzat diversos materials, com a polímers per a la fabricació de membranes, catalitzadors tant per a la metanació del CO2 com per a la reacció de síntesi de Fischer-Tropsch, i diverses partícules inorgàniques nanomètriques per al seu ús en membranes de matriu mixta. Referent a la fabricació de les membranes, la tesi aborda principalment dos tipus: orgàniques i inorgàniques. Respecte a les membranes orgàniques, diferents materials polimèrics s'ha considerat com a candidats prometedors, tant per a la capa selectiva de la membrana, així com com a suport d'aquesta. S'ha treballat amb poliimides, ja que són materials amb temperatures de transició vítria molt alta, per al seu posterior ús en reaccions industrials que tenen lloc entre 250-300 °C. Per a aconseguir membranes molt permeables, mantenint una bona selectivitat, és necessari obtindre capes selectives de menys d'una micra. Emprant com a material de suport altre tipus de polímer, no és necessari estudiar la compatibilitat entre ells, sent menys complexa l'obtenció de capes fines. En canvi, si el suport és de tipus inorgànic, un exhaustiu estudi de la relació entre la concentració i la viscositat de la solució polimèrica és altament necessari. Diverses partícules inorgàniques nanomètriques es van estudiar per a afavorir la permeació d'aigua a través dels materials polimèrics. En segon lloc, quant a membranes inorgàniques, es va realitzar la funcionalització d'una membrana de pal¿ladi per a afavorir la permeació d'hidrogen i evitar la contaminació per monòxid de carboni. El motiu pel qual es va dopar amb un altre metall la capa selectiva de la membrana metàl¿lica va ser per a poder emprar-la en un reactor de Fischer-Tropsch. En relació amb el disseny i fabricació dels reactors, durant aquesta tesi, es va desenvolupar el prototip d'un microreactor per a la metanació de CO2, on una membrana polimèrica de capa fina selectiva a l'aigua es va integrar per a així evitar la desactivació del catalitzador i al seu torn desplaçar l'equilibri i augmentar la conversió de CO2. D'altra banda, un reactor de Fischer-Tropsch va ser redissenyat per a poder introduir una membrana metàl¿lica selectiva a l'hidrogen i poder injectar-lo de manera controlada. D'aquesta manera, i seguint estudis previs, el objectiu va ser millorar la selectivitat als productes desitjats mitjançant el hidrocraqueix i la hidroisomerització d'olefines i parafines amb l'ajuda de l'alta pressió parcial d'hidrogen. / [EN] The present thesis is focused on the development of new gas-separation membranes, as well as their in-situ integration on catalytic membrane reactors for process intensification. For this purpose, several materials have been synthesized such as polymers for membrane manufacture, catalysts for CO2 methanation and Fischer-Tropsch synthesis reaction, and inorganic materials in form of nanometer-sized particles for their use in mixed matrix membranes. Regarding membranes manufacture, this thesis deals mainly with two types: organic and inorganic. With regards to the organic membranes, different polymeric materials have been considered as promising candidates, both for the selective layer of the membrane, as well as a support thereof. Polyimides have been selected since they are materials with very high glass transition temperatures, in order to be used in industrial reactions which take place at temperatures around 250-300 ºC. To obtain highly permeable membranes, while maintaining a good selectivity, it is necessary to develop selective layers of less than one micron. Using another type of polymer as support material, it is not necessary to study the compatibility between membrane and support. On the other hand, if the support is inorganic, an exhaustive study of the relation between the concentration and the viscosity of the polymer solution is highly necessary. In addition, various inorganic particles were studied to favor the permeation of water through polymeric materials. Secondly, as regards to inorganic membranes, the functionalization of a palladium membrane to favor the permeation of hydrogen and avoid carbon monoxide contamination was carried out. The membrane selective layer was doped with another metal in order to be used in a Fischer-Tropsch reactor. Regarding the design and manufacture of the reactors used during this thesis, a prototype of a microreactor for CO2 methanation was carried out, where a thin-film polymer membrane selective to water was integrated to avoid the deactivation of the catalyst and to displace the equilibrium and increase the CO2 conversion. On the other hand, a Fischer-Tropsch reactor was redesigned to introduce a hydrogen-selective metal membrane and to be able to inject it in a controlled manner. In this way, and following previous studies, the aim is to enhance the selectivity to the target products by hydrocracking and hydroisomerization the olefins and paraffins assisted by the presence of an elevated partial pressure of hydrogen. / I would like to acknowledge the Spanish Government, for funding my research with the Severo Ochoa scholarship. / Escorihuela Roca, S. (2019). Novel gas-separation membranes for intensified catalytic reactors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/121139
237

Amélioration de la production de gaz des « Tight Gas Reservoirs » / Production enhancement of Tight Gas Reservoirs

Khaddour, Fadi 11 April 2014 (has links)
La valorisation des réservoirs gaziers compacts, dits Tight Gas Reservoirs (TGR), dont les découvertes sont importantes, permettrait d’augmenter significativement les ressources mondiales d’hydrocarbures. Dans l’objectif d’améliorer la production de ces types de réservoirs, nous avons mené une étude ayant pour but de parvenir à une meilleure compréhension de la relation entre l’endommagement et les propriétés de transport des géomatériaux. L’évolution de la microstructure d’éprouvettes qui ont été soumises préalablement à des chargements dynamiques est étudiée. Une estimation de leurs perméabilités avec l’endommagement est tout d’abord présentée à l’aide d’un modèle de pores parallèles couplant un écoulement de Poiseuille avec la diffusion de Knudsen. Nous avons ensuite mené des travaux expérimentaux afin d’estimer l’évolution de la perméabilité avec l’endommagement en relation avec l’évolution de la distribution de tailles de pores. Les mesures de perméabilité sont effectuées sur des cylindres en mortier similaire aux roches tight gas, soumis à une compression uniaxiale. La caractérisation des microstructures des mortiers endommagés est réalisée par porosimétrie par intrusion de mercure. Afin d’estimer l’évolution de la perméabilité, un nouveau modèle hiérarchique aléatoire est présenté. Les comparaisons avec les données expérimentales montrent la capacité de ce modèle à estimer non seulement les perméabilités apparentes et intrinsèques mais aussi leurs évolutions sous l’effet d’un chargement introduisant une évolution de la distribution de taille de pores. Ce modèle, ainsi que le dispositif expérimental employé, ont été étendus afin d’estimer à l’avenir les perméabilités relatives de mélanges gazeux. Le dernier chapitre présente une étude de l’adsorption de méthane dans différents milieux fracturés par chocs électriques. Les résultats, utiles pour l’estimation des ressources en place, ont montré que la fracturation permet de favoriser l’extraction du gaz initialement adsorbé. / The valorization of compact gas reservoirs, called tight gas reservoirs (TGR), whose discoveries are important, would significantly increase the global hydrocarbon resources. With the aim of improving the production of these types of gas, we have conducted a study to achieve a better understanding of the relationship between damage and the transport properties of geomaterials. The microstructure evolution of specimens, which were submitted beforehand to dynamic loading, has been investigated. An estimation of their permeability upon damage is first presented with the help of a bundle model of parallel capillaries coupling Poiseuille flow with Knudsen diffusion. Then, we have carried out an experimental work to estimate the permeability evolution upon damage in relation to the evolution of the pore size distribution in uniaxial compression. The measurements of permeability have been performed on mortar cylinders, designed to mimic typical tight rocks that can be found in tight gas reservoirs. Microstructural characterization of damaged mortars has been performed with the help of mercury intrusion porosimetry (MIP). To estimate the permeability evolution, a new random hierarchical model has been devised. The comparisons with the experimental data show the ability of this model to estimate not only the apparent and intrinsic permeabilities but also their evolutions under loading due to a change in the pore size distribution. This model and the experimental set up have been extended to estimate the relative permeabilities of gas mixtures in the future. The final chapter presents a study of the adsorption of methane on different porous media fractured by electrical shocks. The results, concerning the estimation of the in-place resources, have shown that fracturing can enhance the extraction of the initial amount of adsorbed gas.
238

Stockage du CO2 et séparation CO2/CH4 par des matériaux de silice à porosité et fonctionnalité contrôlées : étude expérimentale et modélisation de dynamique moléculaire / CO2 storage and CO2/CH4 separation by silica materials : parallel approach : experience-theory

Venet, Saphir 12 December 2018 (has links)
Ce travail vise à évaluer les performances de matériaux à base de silice et à rationaliser leur synthèse en fonction des propriétés d’adsorption recherchées (capacité et/ou sélectivité) en combinant des approches expérimentales et la modélisation de dynamique moléculaire. Ces matériaux devaient idéalement présenter une capacité d’adsorption CO2 mais également une sélectivité CO2 /CH4 élevées. Les différentes étapes de ce travail ont été :- la synthèse et la fonctionnalisation des matériaux de silice,- leur caractérisation texturale et chimique,- la détermination des capacités d’adsorption du CO2, de leur sélectivité CO2/CH 4 ,- les caractérisations par différentes techniques spectroscopiques et microscopiques des échantillons pour essayer de localiser l’adsorption du CO2 et mesurer sa mobilité,- l’identification microscopique par modélisation moléculaire des facteurs physico-chimiques influant sur l’adsorption préférentielle du CO2 et sa diffusivité dans le matériau hôte ainsi que sur le rôle du caractère hydrophile/hydrophobe du matériau de silice par le biais de sa fonctionnalisation.Ces objectifs ont nécessité la préparation de matériaux à surfaces spécifiques élevées par le biais d’un procédé sol-gel simple. Ces matériaux ont été modifiés afin d’obtenir un taux de fonctionnalisation par des groupements -CH3 suffisant pour modifier le caractère hydrophile du matériaux tout en conservant une surface spécifique suffisante. L’influence de la taille des pores a également été sondée.Les capacités d’adsorption des gaz sous pression ont été réalisées pour les gaz purs mais également sur des mélanges CO2/CH4 dans différentes proportions. La sélectivité CH 4 /CO 2 , souvent estimée à partir des isothermes des corps purs et/ou la méthode IAST, a dans ce cas été déterminée à partir de la mesure directe des isothermes des mélanges de gaz. Il est apparu que l’eau joue un rôle crucial sur les capacité et sélectivités d’adsorption. Ce paramètre est l’un de ceux qui a été étudié à travers les simulations de dynamiques moléculaires. L’influence de l’introduction de groupements hydrophobes a également été exploré.Les résultats obtenus par dynamique moléculaire sont dans l’ensemble en bon accord avec les données expérimentales. Ces deux approches parallèles expérience/théorie ont mis en évidence la sélectivité de l’un des matériaux pour des applications où l’effluent gazeux est peu chargé en CO 2 . / This work aims to evaluate the performance of silica-based materials and to rationalize their synthesis according to their desired adsorption properties (capacity and/or selectivity) by combining experimental approaches and the management of the molecular animal. These materials are ideally suited for CO2 adsorption capacity but also CO2/ CH4 selectivity. The different stages of this work were:- the synthesis and functionalization of the silica materials,- their textural and chemical characterization,- the determination of CO2 adsorption capacities, of their CO2/ CH4 selectivity.- the characterizations by various spectroscopic and microscopic techniques of tests to try to locate the adsorption of CO2 and to measure its mobility,- microscopic identification by the factor of physic-Factors influence the preferential adsorption of CO2 and its diffusivity in the role of hydrophilic / hydrophobic character in silica by functional.These objectives required the preparation of high specific surface materials through a simple sol-gel process. These materials have been modified in order to obtain a degree of functionalization with -CH3 groups sufficient to modify the hydrophilic nature of the material while maintaining a sufficient specific surface area. The influence of pore size was also probed.The adsorption capacities of the gases under pressure were carried out for pure gases but also on CO2/ CH4 mixtures in different proportions. The CH4/ CO2 selectivity, often estimated from the pure body isotherms and / or the IAST method, was in this case determined from the direct measurement of the isotherms of the gas mixtures. It has become apparent that water plays a crucial role in adsorption capacity and selectivity. This parameter is one of those studied through molecular dynamics simulations. The influence of the introduction of hydrophobic groups has also been explored.The results obtained by molecular dynamics are on the whole in good agreement with the experimental data. These two parallel experience / theory approaches have highlighted the selectivity of one of the materials for applications where the gaseous effluent is little loaded with CO2.
239

Passive Gas-Liquid Separation Using Hydrophobic Porous Polymer Membranes: A Study on the Effect of Operating Pressure on Membrane Area Requirement

Maxwell, Taylor Patrick 01 January 2012 (has links)
The use of hydrophobic porous polymer membranes to vent unwanted gas bubbles from liquid streams is becoming increasingly more common in portable applications such as direct methanol fuel cells (DMFCs) and micro-fluidic cooling of electronic circuits. In order for these portable systems to keep up with the ever increasing demand of the mobile user, it is essential that auxiliary components, like gas-liquid separators (GLS), continue to decrease in weight and size. While there has been significant progress made in the field of membrane-based gas-liquid separation, the ability to miniaturize such devices has not been thoroughly addressed in the available literature. Thus, it was the purpose of this work to shed light on the scope of GLS miniaturization by examining how the amount porous membrane required to completely separate gas bubbles from a liquid stream varies with operating pressure. Two membrane characterization experiments were also employed to determine the permeability, k, and liquid entry pressure (LEP) of the membrane, which provided satisfying results. These parameters were then implemented into a mathematical model for predicting the theoretical membrane area required for a specified two-phase flow, and the results were compared to experimental values. It was shown that the drastically different surface properties of the wetted materials within the GLS device, namely polytetrafluoroethylene (PTFE) and acrylic, caused the actual membrane area requirement to be higher than the theoretical predictions by a constant amount. By analyzing the individual effects of gas and liquid flow, it was also shown that the membrane area requirement increased significantly when the liquid velocity exceeded an amount necessary to cause the flow regime to transition from wedging/slug flow to wavy/semi-annular flow.
240

Membranes zéolithiques de type MFI pour l'extraction et la séparation de l'hydrogène / Development of zeolitic MFI membranes for hydrogen extraction and separation

Darwiche, Ali 21 June 2010 (has links)
Cette étude se situe dans le cadre des recherches menées par le CEAEA sur la production massive d'hydrogène, sans émission de gaz à effet de serre, via un cycle thermo-chimique de décomposition de l'eau couplé à une source de chaleur à haute température d'origine nucléaire. Dans le cas particulier du cycle dit« Iode-Soufre», on doit extraire H2 à partir d'un mélange H2/HI/H20 très corrosif, opération pour laquelle des procédés membranaires ont été proposés. L'objectif de ce travail est le développement de membranes zéolithiques de type MFI susceptibles d'être utilisées dans ce contexte. Nous présentons les différents matériaux utilisés, la méthodologie de synthèse de couches minces de Silicalite-1 et de ZSM-5 synthétisée sans structurant organique, les techniques de caractérisation des membranes. Une étude cinétique nous a permis d'optimiser et de contrôler les conditions d'obtention de ces couches minces déposées sur des substrats tubulaires en Ti02 et plans en Al2O3-α. De nombreuses expériences de perméation ont été réalisées, pour des gaz simples (H2, He, Ar, N 2, C02, SF6) et des mélanges gazeux (H2/H20/Ar) et (H2/H20/HI/Ar). Les effets de la température, de la pression amont, de l'épaisseur et de la longueur de la couche mince ainsi que du gaz vecteur ont été étudiés en détail. Il apparaît que la présence de molécules d'H20 dans le système joue un rôle prépondérant sur la perméation des autres molécules. / In the general context of massive and "carbon free" hydrogen production studies, the aim of this work was the development of zeolitic MFI membranes for hydrogen extraction and separation. The methodology of synthesis, the membranes characterization techniques as well as the permeation experimental setup are presented. Optimization and control of the elaboration of Ti02 supported Silicalite-1 and template free ZSM-5 membranes have been reached. Details of the full kinetic study that we performed are given. Numerous permeation experiments, involving pure gas (H2, He, Ar, N2, C02, SF6) and mixtures (H2/H20/Ar) and (H2/H 20/HI/Ar) have been carried on. The effects of temperature, feed pressure, thickness and length of the membranes, as well as the role of the sweeping gas have been emphasized. In the case of gas mixtures, the presence of H20 molecules appears to be a predominant factor.

Page generated in 0.1205 seconds