• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Freshwater methane and carbon dioxide fluxes : Spatio-temporal variability and an integrated assessment of lake and stream emissions in a catchment / Metan- och koldioxidflöden från sötvattensmiljöer : Variation i tid och rum samt en integrerad bedömning av emissioner från sjöar och vattendrag i ett avrinningsområde

Natchimuthu, Sivakiruthika January 2016 (has links)
Freshwater bodies such as lakes and streams release the greenhouse gases methane (CH4) and carbon dioxide (CO2) into the atmosphere. Global freshwater CH4 and CO2 emissions have been estimated to be of a similar magnitude to the global land or ocean carbon sink, and are thus significant components of global carbon budgets. However, the data supporting global estimates frequently lacks information regarding spatial and temporal variability and are thus highly inaccurate. In this thesis, detailed studies of the spatio-temporal variability of CH4 and CO2 fluxes were conducted in the open water areas of lakes and streams within a whole catchment in Sweden. One aim was also to evaluate the importance of spatio-temporal variability in lake and stream fluxes when making whole catchment aquatic or large scale assessments. Apart from the expected large spatio-temporal variability in lake fluxes, interactions between spatial and temporal variability in CH4 fluxes were found. Shallow lakes and shallow areas of lakes were observed to emit more CH4 as compared to their deeper counterparts. This spatial variability interacted with the temporal variability driven by an exponential temperature response of the fluxes, which meant that shallow waters were more sensitive to warming than deeper ones. Such interactions may be important for climate feedbacks. Surface water CO2 in lakes showed significant spatio-temporal variability and, when considering variability in both space and time, CO2 fluxes were largely controlled by concentrations, rather than gas transfer velocities. Stream fluxes were also highly variable in space and time and in particular, stream CH4 fluxes were surprisingly large and more variable than CO2 fluxes. Fluxes were large from stream areas with steep slopes and periods of high discharge which occupied a small fraction of the total stream area and the total measurement period, respectively, and a failure to account for these spatially distinct or episodic high fluxes could lead to underestimates. The total aquatic fluxes from the whole catchment were estimated by combining the measurements in open waters of lakes and streams. Using our data, recommendations on improved study designs for representative measurements in lakes and streams were provided for future studies. Thus, this thesis presents findings relating to flux regulation in lakes and streams, and urges forthcoming studies to better consider spatio-temporal variability so as to achieve unbiased large-scale estimates. / Sötvatten som sjöar och vattendrag är källor till växthusgaserna metan (CH4) och koldioxid (CO2) i atmosfären. De globala utsläppen av CH4 och CO2 från sötvatten har uppskattats vara av samma storleksordning som den globala land- eller havskolsänkan och är därmed viktiga delar av jordens växthusgasbudget. De globala uppskattningarna saknar ofta information om variation i tid och rum och är därmed mycket osäkra. Denna avhandling behandlar hur CH4- och CO2-flöden från öppet vatten i sjöar och vattendrag i ett avrinningsområde varierar rumsligt och tidsmässigt. Ett syfte var också att utvärdera betydelsen av dessa variationer när data extrapoleras för att göra storskaliga uppskattningar av växthusgasflöden från vattenmiljöer. Förutom de förväntade stora rumsliga och tidsmässiga variationerna i sjöars gasflöden identifierades interaktioner mellan rumsliga och tidsmässiga variation för CH4-flöden. Den rumsliga variabiliteten med högre CH4-flöden från grunda vatten interagerade med tidsvariationen, som i sin tur drevs av en exponentiell temperaturrespons av gasflödena. Det betyder att grunda vattenområden var mer känsliga för uppvärmning än djupare vatten och därmed att vattendjupet har betydelse för hur sjöars CH4-utsläpp påverkas av klimatet. Koncentrationer av CO2 i sjöars ytvatten uppvisade också en betydande rumslig och tidsmässig variation som tillsammans visar att CO2-flöden över längre perioder till stor del styrs av koncentrationer snarare än av gasutbyteshastigheter. Vattendragens gasflöden varierade också mycket i tid och rum. Detta gällde i synnerhet CH4-flödena vilka var förvånansvärt stora och mer varierande än CO2-flödena. Gasflödena var höga från områden i vattendrag med högre lutning och då det var höga vattenflöden, trots att dessa områden och tidsperioder utgjorde en bråkdel av den totala arean och mätperioden. Att inte räkna med dessa gasflöden från bäcksektioner med höga vattenhastigheter eller korta perioder med höga flöden, leder till underskattningar. De totala CH4- och CO2-flödena från öppet vatten i hela avrinningsområdet uppskattades genom att kombinera mätningar i sjöar och vattendrag. Denna avhandling visar att rumslig och tidsmässig variabilitet har stor betydelse, och den ger information om hur denna variation kan beaktas för bättre framtida mätningar och storskaliga uppskattningar av växthusgasflöden från sjöar och vattendrag.
2

CARBONDIOXIDE FLUXES FROM A CONTROLLED BOREAL RIVER

ARTHUR, FRANK January 2018 (has links)
River, lakes and   streams account for more carbon dioxide emissions than all other freshwater   reservoirs together. However, there is still lack of knowledge of the   physical processes that control the efficiency of the air-water exchange of   CO2 in these aquatic systems. In the more turbulent water sections   of a river, the gas transfer is thought to be governed by the river’s   morphology such as bottom topography, slope and stream flow. Whiles for wider   sections of the river, the gas transfer could potentially be influenced by   atmospheric forcing (e.g. Wind speed). The main purpose of this project is to   study the fluxes of carbon dioxide and how (wind speed and stream discharge)   influence the CO2 fluxes in the river. In this study, direct and   continuous measurements of CO2 emission was conducted for the   first time in a controlled boreal river in Kattstrupeforsen (Sweden) from   18th April to 10th May 2018. A unique measurement setup which combines eddy   covariance techniques, general meteorology and in situ water variables (for   high accuracy emission measurements) was used. The results show that   in the late winter, an   upward directed CO2 fluxes measured in the river was approximately   2.2 μmol m−2 s−1. This value agrees with many other small and   large rivers where CO2 fluxes has been studied. The river can be   said to serve as source of CO2 to the atmosphere in the day due to   the dominant upward fluxes recorded during the daytime. The results also show   that carbon dioxide fluxes increase with increasing wind speed notably at   wind speed above 2 m s-1. There   was no relation between CO2 fluxes and stream discharge. This   indicates that wind speed could be one principal factor for air- river gas   exchange. The findings in this work on river gas exchange will provide   a basis for a regional estimate and be applicable for many river systems on a   global scale. / <p>2018-07-09</p>

Page generated in 0.1089 seconds