Spelling suggestions: "subject:"gasliquid separation"" "subject:"aliquid separation""
1 |
Investigação da distribuição de tamanho de bolhas em um separador gás-líquido do tipo shroud invertido / Investigation of bubble-diameter distribution in a gas-liquid inverted-shroud separatorBarbosa, Marcel Cavallini 13 November 2015 (has links)
Operações de produção de petróleo, que utilizam sistemas de bombeamento centrífugo submerso, constantemente encontram a presença de gás livre nos poços, o que pode gerar ou agravar problemas como cavitação e falhas dinâmicas, quando o gás é succionado pela bomba. O separador gravitacional do tipo shroud invertido é uma solução possível para este problema nos casos de operação em poços direcionais de petróleo. O trabalho tem como objetivo apresentar um estudo do diâmetro das bolhas que ocorrem no interior de um separador gravitacional gás-líquido do tipo shroud invertido. A finalidade é o aprimoramento de um modelo fenomenológico do funcionamento deste tipo de separador, aplicado à indústria petrolífera, sendo que o modelo fenomenológico garante total separação de gás, fornecidas determinadas condições. O modelo prevê, através do cálculo da energia cinética turbulenta, o tamanho médio das bolhas carregadas para o seio do líquido por aeração no duto anular. Partindo de estudos anteriores, uma verificação do modelo fenomenológico foi feita utilizando um aparato experimental com misturas bifásicas ar-água e ar-óleo em três diferentes inclinações. O aparato possui dimensões radiais reais de um poço de petróleo offshore. Foi utilizado um sensor 3D ORM para a medição do tamanho médio (sauter) das bolhas arrastadas pelo líquido até a entrada do tubo de produção, em diversas combinações de vazões da mistura água-ar. Esta medição permite o ajuste das correlações que regem o modelo fenomenológico, no que diz respeito às equações dependentes do diâmetro teórico de bolhas arrastadas pela fase líquida. As descobertas provenientes deste estudo foram implementadas em um código computacional que será utilizado pela PETROBRAS, financiadora do projeto, para suas operações de bombeamento. / Oil mining operations powered by centrifugal submersible pumping systems suffer constant setbacks due to the presence of free gas in wells. Decompression in the reservoir liberates this gas in the form of bubbles that, upon reaching the suction end of the pump, cause cavitation and dynamic failures resulting in production and equipment losses. The Inverted-shroud gravitational separator is a possible solution to this problem. This work presents a study on diameters of bubbles that occur inside this separator. The goal is the improvement of the understanding of this kind of separator as well as the enhancement of a previously reported phenomenological model, which ensures total gas separation when the separator is installed in directional wells and under specific operational conditions. Empirically adjusted correlations are used to ensure that all entrained bubbles do not reach the pump. The model was tested for two-phase flows of water-air and oil-air mixtures using three different inclinations. Tests were performed with an experimental apparatus that simulates a pilot-scale well casing with an inverted-shroud separator installed. A 3D ORM particle-size sensor was employed in order to measure the average (sauter) diameter of entrained bubbles that are dragged by the liquid flow towards the end of the production tube. This investigation will be used to improve the reliability of the phenomenological model and reduce its dependency on a theoretical prediction of the bubble size. The findings were incorporated to the final version of an in-house gas separator design software developed at the request of PETROBRAS, the project funder and Inverted-shroud patent holder, for usage on its oil mining operations.
|
2 |
Investigação da distribuição de tamanho de bolhas em um separador gás-líquido do tipo shroud invertido / Investigation of bubble-diameter distribution in a gas-liquid inverted-shroud separatorMarcel Cavallini Barbosa 13 November 2015 (has links)
Operações de produção de petróleo, que utilizam sistemas de bombeamento centrífugo submerso, constantemente encontram a presença de gás livre nos poços, o que pode gerar ou agravar problemas como cavitação e falhas dinâmicas, quando o gás é succionado pela bomba. O separador gravitacional do tipo shroud invertido é uma solução possível para este problema nos casos de operação em poços direcionais de petróleo. O trabalho tem como objetivo apresentar um estudo do diâmetro das bolhas que ocorrem no interior de um separador gravitacional gás-líquido do tipo shroud invertido. A finalidade é o aprimoramento de um modelo fenomenológico do funcionamento deste tipo de separador, aplicado à indústria petrolífera, sendo que o modelo fenomenológico garante total separação de gás, fornecidas determinadas condições. O modelo prevê, através do cálculo da energia cinética turbulenta, o tamanho médio das bolhas carregadas para o seio do líquido por aeração no duto anular. Partindo de estudos anteriores, uma verificação do modelo fenomenológico foi feita utilizando um aparato experimental com misturas bifásicas ar-água e ar-óleo em três diferentes inclinações. O aparato possui dimensões radiais reais de um poço de petróleo offshore. Foi utilizado um sensor 3D ORM para a medição do tamanho médio (sauter) das bolhas arrastadas pelo líquido até a entrada do tubo de produção, em diversas combinações de vazões da mistura água-ar. Esta medição permite o ajuste das correlações que regem o modelo fenomenológico, no que diz respeito às equações dependentes do diâmetro teórico de bolhas arrastadas pela fase líquida. As descobertas provenientes deste estudo foram implementadas em um código computacional que será utilizado pela PETROBRAS, financiadora do projeto, para suas operações de bombeamento. / Oil mining operations powered by centrifugal submersible pumping systems suffer constant setbacks due to the presence of free gas in wells. Decompression in the reservoir liberates this gas in the form of bubbles that, upon reaching the suction end of the pump, cause cavitation and dynamic failures resulting in production and equipment losses. The Inverted-shroud gravitational separator is a possible solution to this problem. This work presents a study on diameters of bubbles that occur inside this separator. The goal is the improvement of the understanding of this kind of separator as well as the enhancement of a previously reported phenomenological model, which ensures total gas separation when the separator is installed in directional wells and under specific operational conditions. Empirically adjusted correlations are used to ensure that all entrained bubbles do not reach the pump. The model was tested for two-phase flows of water-air and oil-air mixtures using three different inclinations. Tests were performed with an experimental apparatus that simulates a pilot-scale well casing with an inverted-shroud separator installed. A 3D ORM particle-size sensor was employed in order to measure the average (sauter) diameter of entrained bubbles that are dragged by the liquid flow towards the end of the production tube. This investigation will be used to improve the reliability of the phenomenological model and reduce its dependency on a theoretical prediction of the bubble size. The findings were incorporated to the final version of an in-house gas separator design software developed at the request of PETROBRAS, the project funder and Inverted-shroud patent holder, for usage on its oil mining operations.
|
3 |
Performance study and modelling of an integrated pump and gas-liquid separator system: Optimisation for aero-engine lubrication systemsSteimes, Johan 26 August 2013 (has links)
A system able to simultaneously separate and pump a gas-liquid mixture was developed.<p>It works efficiently and can be used in many applications (nuclear power plants,<p>pulp and paper processing, petroleum extraction, etc.). However, this pump and separator<p>system (PASS) was especially designed to handle air-oil mixture generated in<p>aero-engine lubrication systems. The PASS combines three important functions of the<p>scavenge part of the lubrication system: the deaeration and deoiling of the air-oil mixture<p>generated in the bearing and gearbox sumps and the pumping of the oil towards<p>the tank. These are critical functions for the engine. Indeed, a poor deoiling efficiency<p>leads to a high oil consumption. This reduces the flight endurance, increases the size<p>and weight of the oil tank and has a negative impact on the environment. Poor deaeration<p>and pumping characteristics lead to problems in the cooling and the lubrication of<p>the engine bearings.<p><p>Integrating a PASS into the lubrication system allows considerable improvements<p>(and simplification) to the lubrication system architecture. An important number of<p>components are suppressed: the vent lines, the deoiler, the cyclone deaerator and the<p>scavenge pumps. This reduces the size and the weight of the lubrication system and<p>increases its reliability. Furthermore, an important part of this PhD thesis focuses on<p>reducing the oil consumption in the PASS. This improves the flight endurance, reduces<p>engine maintenance and working costs and is profitable to the environment.<p><p>In addition to the development of an advanced PASS design system, the objective of<p>this thesis was to obtain a good understanding of the separation processes occurring in<p>the PASS and to develop theoretical models able to predict the separation performance<p>for every working condition encountered in a typical aircraft flight. To achieve this<p>goal, three main tasks were performed: the development of different two-phase measurement<p>systems, the experimental tests of four different PASS architectures and the<p>theoretical development (after an extensive literature review) of correlations predicting<p>the performance of the PASS in function of the working conditions. Five specific aspects<p>of the PASS were studied: the inlet flow, the deoiling efficiency, the deaeration efficiency,<p>the pumping efficiency and the pressure drop. Finally, the models that have been developed<p>with the help of the measurement systems and of the experiments have been<p>integrated in a complete model of the lubrication system (under the EcosimPro modelling<p>environment). This helps to predict real in flight PASS working conditions and<p>performance. Indeed, the PASS is very sensitive to the engine working conditions and<p>an optimisation of the prototype size and performance is only feasible with an accurate<p>knowledge of these working conditions and a complete lubrication system model.<p>Finally, with the results of this PhD thesis, a new PASS design, optimised for different<p>aero-engine lubrication systems, is presented. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
4 |
Passive Gas-Liquid Separation Using Hydrophobic Porous Polymer Membranes: A Study on the Effect of Operating Pressure on Membrane Area RequirementMaxwell, Taylor Patrick 01 January 2012 (has links)
The use of hydrophobic porous polymer membranes to vent unwanted gas bubbles from liquid streams is becoming increasingly more common in portable applications such as direct methanol fuel cells (DMFCs) and micro-fluidic cooling of electronic circuits. In order for these portable systems to keep up with the ever increasing demand of the mobile user, it is essential that auxiliary components, like gas-liquid separators (GLS), continue to decrease in weight and size. While there has been significant progress made in the field of membrane-based gas-liquid separation, the ability to miniaturize such devices has not been thoroughly addressed in the available literature. Thus, it was the purpose of this work to shed light on the scope of GLS miniaturization by examining how the amount porous membrane required to completely separate gas bubbles from a liquid stream varies with operating pressure. Two membrane characterization experiments were also employed to determine the permeability, k, and liquid entry pressure (LEP) of the membrane, which provided satisfying results. These parameters were then implemented into a mathematical model for predicting the theoretical membrane area required for a specified two-phase flow, and the results were compared to experimental values. It was shown that the drastically different surface properties of the wetted materials within the GLS device, namely polytetrafluoroethylene (PTFE) and acrylic, caused the actual membrane area requirement to be higher than the theoretical predictions by a constant amount. By analyzing the individual effects of gas and liquid flow, it was also shown that the membrane area requirement increased significantly when the liquid velocity exceeded an amount necessary to cause the flow regime to transition from wedging/slug flow to wavy/semi-annular flow.
|
Page generated in 0.1105 seconds