• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 147
  • 31
  • 30
  • 27
  • 10
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 710
  • 231
  • 191
  • 116
  • 114
  • 113
  • 99
  • 98
  • 70
  • 68
  • 63
  • 59
  • 53
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Aspectos clássicos de teorias de segunda ordem/

Pompéia, Pedro José. January 2009 (has links)
Orientador: Bruto Max Pimentel Escobar / Banca: Josif Frenkel / Banca: Carlos Augusto Romero Filho / Banca: Esdras Santana dos Santos / Banca: Jose Geraldo Pereira / Resumo: Neste trabalho foram estudados aspectos clássicos de teorias de segunda ordem. Primeiramente foi feita a formulação da teoria de gauge para sistemas em que a Lagrangiana do campo de gauge depende de suas componentes e se suas derivadas primeira e segunda aplicações desta estrutura para os casos U(1) - a eletrodinâmica generalizada de Podolsky - e SU(N) - Lagrangiana efetiva de Alekseev, Abuzov e Baikov. O uso desta estrutura para o caso do grupo de Lorentz SO(3,1) foi feito em separado e uma análise da solução estática e isotrópica no regime linear foi conduzida para um caso particular. Na sequência, analisou-se como a teoria de Podolsky poderia ser vinculada de três maneiras distintas, a partir de dados experimentais disponíveis na literatura. Finalmente, estudou-se regimes não relativísticos da eletrodinâmica de Podolsky, utilizando-se o formalismo galileanoem 5 dimensões. Os limites elétrico e magnético da teoria foram analisados / Abstract: In this work, classical and semiclassical aspects of second order theories were analyzed. First the formulation of a gauge theory for systems whose Lagrangian for the gauge field depends on the field itself and its first and second derivatives was proposed. Applications of this structuire for the U(1) group - Podolsky generalized electodynamics - and for SU(N) - Alekseev, Abuzov e Baikov effective Lagrangian - were made. The Lorentz group SO(3,1) was also analyzed and an isotropic and static solution in linear approximation was obtained for a particular case. Next it was analyzed how Podolsky thory could be constrainedin three different ways using experimetnal data available on the literature. Finally the non-relativistic limits of Podolsky electrodyamics were analyzed on the 5-dimensional galilean formalism. The electric and magnetic limits were obtained / Doutor
212

Soluções do tipo vórtice em um modelo de Maxwell-Chern-Simons-Higgs com campos de Gauge distintos /

Guimarães, Thiago Vinícius Moreira. January 2015 (has links)
Orientador: Marcelo Batista Hott / Banca: Álvaro de Souza Dutra / Banca: Rodolfo Alván Casana Sifuentes / Resumo: Nessa dissertação temos o intuito de buscar soluções do tipo vórtice em um modelo não encontrado na literatura, que consiste em um densidade de lagrangiana formada por um termo de Maxwell gerado por um campo de gauge Aµ e um termo de Chern-Simons gerado por outro campo de gauge Aµ, fazendo uso de um potencial autodual com vácuo não trivial de sexta ordem. Tal modelo apresenta uma interessante equação de primeira ordem nas derivadas para Ø, com solução exata, porém ela não é consistente com a equação de segunda ordem, sendo portanto invalida. Além disso não foi possível minimizar a energia do sistema, pois a contribuição do campo elétrico não pode ser eliminada sem causar inconsistências nas equações de movimento. Para tentar contornar esse problema, foi tentado introduzir um novo termo de Chern-Simons, misto, composto pelos dois campos Aµ e Aµ. Nesse contexto a energia pôde ser minimizada sem causar problemas às equações de movimento, porem ainda não foi possível obter soluções do tipo vórtice, pois as soluções para Ø encontradas divergiam. Novamente sem soluções do tipo vórtice, o modelo original foi alterado, de forma a conter um campo escalar real N e um potencial também de sexta ordem. Com isso, a energia do sistema foi minimizada e soluções topológicas do tipo vórtice foram encontradas. Ainda desenvolvemos uma forma idiossincrática de abordar o mecanismo de Bogomol'nyi sem a necessidade direta de completar quadrado e se baseando naturalmente na consistência entre as equações autoduais e as de movimento. / Abstract: In this dissertation we mean to seek vortex solutions in a model not found in literature, consisting in Lagrangian density given by a Maxwell term generated by a field gauge A mu,and Chern-Simons term generated by another field gauge Aµ, using a self-dual potential with nontrivial sixth-order vacuum. This model features an interesting first order equation for Ø, with solution exact, but it is not consistent with the second order equation, and therefore invalid. Moreover, it was not possible to minimize the model's energy, since the contribution of the electric field can not be eliminated without causing inconsistencies in the equations of motion. To try work around this problem, we tried to introduce a new mixed Chern-Simons term, composed of two fields Aµ and Aµ. In this context the energy was minimized without causing problems the equations of motion, but has not yet been possible to obtain vortex solutions, because the solutions to Ø diverges. Again, without the vortex solutions, the original model has changed, to contain a real scalar field N. Thus, the energy of the system was minimized and topological vortex solutions were found. Yet, we developed an idiosyncratic approach to the Bogomol'nyi's mechanism without the direct need to complete square and naturally based on the consistency between the self-duals equations and equations of motion / Mestre
213

Extensometria : avaliação de implantes de sextavado externo posicionados na configuração linear e compensada (offset), sob carregamento axial /

Kojima, Alberto Noriyuki. January 2008 (has links)
Orientador: Renato Sussumu Nishioka / Banca: Wirley Gonçalves Assunção / Banca: Alysson Noriyuki Kajishima Konno / Banca: Eduardo Shigueyuki Uemura / Banca: Osvaldo Daniel Andreatta Filho / Resumo: O objetivo deste estudo foi avaliar, por meio da extensometria, a distribuição de tensões ao redor de implantes em função dos diferentes locais para carregamento, tipo de coifa (plástica ou usinada) e configuração (linear e compensada). Para tanto, em um bloco de poliuretano, foram posicionados paralelos entre si e com uma configuração linear, implantes auto-rosqueáveis de hexágono externo, com dimensões de 3,75 X 13mm, a uma distancia de 7mm, de centro a centro. Em um outro bloco a fixação do meio foi deslocada em 2mm para gerar uma configuração compensada (offset). Pilares protéticos Micro-unit, com 3mm de cinta foram instalados sobre as fixações. Com duas matrizes em aço inoxidável foram confeccionados 10 enceramentos para cada bloco, distribuídos da seguinte forma: 5 para coifa plástica e 5 para coifas usinadas (n=5). A seguir esses padrões foram fundidos com uma liga de Co-Cr. Quatro extensômetros (strain gauges) foram colados na superfície superior de cada bloco tangenciando a plataforma de cada fixação. Um carregamento de 30kg durante 10s foi feito em cinco posições (A, B, C, D, E), sendo repetido três vezes para aquisição dos dados (em με) pela aparelho condicionador de sinais. Os dados obtidos foram submetidos a análise de variância (ANOVA) e teste de Tukey (p<0,05). Como conclusão da análise dos resultados obtidos pudemos observar que não houve diferença na utilização de coifas plásticas e usinadas, que não houve diferença entre as configurações linear e compensada; havendo diferença estatisticamente significante para os locais de carregamento / Abstract: The aim of this study was to evaluate, using strain gauge, the load distribution surround the implants according differents loading sites, coping types (plastic and machined) and configuration (linear and offset). In one polyurethane block, three cylindrical implants with external hexagon (3.75mm x 13mm) were fixed parallel with 7mm between their centers in a linear configuration. In another block the midle implant was positioned in a 2mm offset. Micro-units abutments with 3mm of metallic neck were fixed. With two metallics matrix, it was manufactured 10 wax patterns for each block, distributed in the following form: 5 for plastic copings and 5 for machined copings (n=5). After, patterns were casted in cobalt-chromium alloy. Four strain gauges were positioned on the upper surface of each polyurethane model around the implants. An axial load of 30kg within 10 seconds in five positions (A, B, C, D, E), with three repetead measurements for data aquisition (in με) by the multichanel bridge machine. The datas were submitted to ANOVA and Tukey test (p<0.05). Such as conclusion from the obtained data treatment: there was no difference between the plastic and machined copings, there was no difference between the linear and offset configuration; there was statiscal significance only with the differents loading sites. / Doutor
214

Calabi-Yau compactifications of type II string theories / Compactification de Calabi-Yau de theorie de cordes de type II

Banerjee, Sibasish 29 September 2015 (has links)
Les effets non-perturbatifs jouent un rôle extrêmement important dans la physique théorique contemporaine. Par exemple, ils sont connus d’être responsables de divers phénomènes physiques tels que le confinement des quarks et les dualités. Une arène particulièrement riche pour ces effets est fournie par des théories de jauge et des cordes. En particulier, pour les théories avec la supersymétrie N=2 à 4 dimensions, les années récentes ont marqué un progrès remarquable en compréhension leur dynamique non-perturbative. Peut-être un des résultats les plus intrigants est l'apparition de l’intégrabilité dans plusieurs problèmes de cette sorte. Ces résultats fournissent des relations non-triviales entre différents systèmes physiques et constructions mathématiques et donnent l’espoir que beaucoup de problèmes de longue date peuvent être en fait exactement solubles. La thèse est supposée d’explorer ces relations entre les effets non-perturbatifs et l’intégrabilité. Plus précisément, il est suggéré d'étudier le problème des compactifications des théories des cordes qui préservent la supersymétrie N=2. Leur action effective à basses énergies est complètement déterminée par une métrique sur un certain espace de modules qui est connu à recevoir des corrections instantoniques. Bien que beaucoup d'entre elles aient été déjà trouvées, la description non-perturbative complète est encore absente. D'autre part, sa importance va beaucoup au delà de l'action effective mentionnée ci-dessus puisqu'elle devrait contenir des informations sur la S-dualité, symétrie miroir non-perturbative, croisement de murs, trous noirs supersymétriques. Ainsi, le travail dans cette direction permettra non seulement obtenir des résultats intéressants, mais étudier également beaucoup de proches sujets dans la théorie des cordes, mathématiques et d'autres domaines de recherche. / Non-perturbative effects play an extremely important role in the moderntheoretical physics. For example, they are known to be responsible forvarious physical phenomena such as confinement and dualities.An especially rich arena for these effects is provided by gauge andstring theories. In particular, for theories with N=2 supersymmetry in4 dimensions, recent years marked a remarkable progress in understandingtheir non-perturbative dynamics. May be one of the most intriguing findingsis the appearance of integrability in several, sometimes differentlylooking problems. These results provide non-trivial relations betweendifferent physical systems and mathematical constructions and givea hope that many longstanding problems can be in fact exactly solvable.The thesis is supposed to explore these relations between non-perturbativeeffects and integrability. More precisely, it is suggested to study the problemof compactifications of string theories which preserve N=2 supersymmetry.Their low-energy effective action is completely determined by a metricon a certain moduli space which is known to receive instanton corrections.Although many of them have been already found, the complete non-perturbativedescription is still out of reach. On the other hand, its relevance goes muchbeyond the effective action mentioned above since it should encode informationabout S-duality, non-perturbative mirror symmetry, wall-crossing, supersymmetricblack holes. Thus, working in this direction would allow not only to obtaininteresting results, but also to study many related subjects in string theory,mathematics and other research areas.
215

Geometric aspects of gauge and spacetime symmetries

Gielen, Steffen C. M. January 2011 (has links)
We investigate several problems in relativity and particle physics where symmetries play a central role; in all cases geometric properties of Lie groups and their quotients are related to physical effects. The first part is concerned with symmetries in gravity. We apply the theory of Lie group deformations to isometry groups of exact solutions in general relativity, relating the algebraic properties of these groups to physical properties of the spacetimes. We then make group deformation local, generalising deformed special relativity (DSR) by describing gravity as a gauge theory of the de Sitter group. We find that in our construction Minkowski space has a connection with torsion; physical effects of torsion seem to rule out the proposed framework as a viable theory. A third chapter discusses a formulation of gravity as a topological BF theory with added linear constraints that reduce the symmetries of the topological theory to those of general relativity. We discretise our constructions and compare to a similar construction by Plebanski which uses quadratic constraints. In the second part we study CP violation in the electroweak sector of the standard model and certain extensions of it. We quantify fine-tuning in the observed magnitude of CP violation by determining a natural measure on the space of CKM matrices, a double quotient of SU(3), introducing different possible choices and comparing their predictions for CP violation. While one generically faces a fine-tuning problem, in the standard model the problem is removed by a measure that incorporates the observed quark masses, which suggests a close relation between a mass hierarchy and suppression of CP violation. Going beyond the standard model by adding a left-right symmetry spoils the result, leaving us to conclude that such additional symmetries appear less natural.
216

Review of scalar meson production at √S = 7 TeV in CMS, U(1)′ gauge extensions of the MSSM and calorimetry for future colliders

Bilki, Burak 01 July 2011 (has links)
The three main parts of this thesis demonstrate our current understanding of certain physics but mostly go beyond our understanding and present novel approaches, both technically and physically. The first part concentrates on the scalar mesons and presents search methodology to enable a better understanding of their existence and structures. The second part discusses one step further on beyond the standard model physics searches. Emphasis is given to discriminating factors between the MSSM and the U(1)' gauge extended models. The last part discusses a specific readout problem in calorimetry together with its solution and presents the digital hadron calorimetry, which will be an essential part of calorimeter systems of future colliders.
217

Evaluating the use of neural networks to predict river flow gauge values

Walford, Wesley Michael January 2017 (has links)
Without improved water management the global population could be facing serious water shortages. River flow discharge rates are one factor that could contribute to improving water management, being able to predict a forecasted river flow value would provide support in the management of water resources. This research investigates the use of an artificial neural network (ANN) to create a model that predicts river flow gauge values. The Driel Barrage monitoring station on the Thukela river in South Africa was used as a case study. The research makes use of data from the Department of Water and Sanitation (DWS) and weather forecast data from the European Center For Medium- Range Forecasts (ECMWF) to train the predictive model. An evaluation of the ANN model identified that the model is highly sensitive to selected weather parameters and is sensitive to the initial weights used in the ANN. These were overcome using an ANN ensemble and selective scenarios to identify the best weather parameters to use as input into the ANN model. Five weather parameters and a correlation coefficient cut-off value produced the most accurate prediction by the ANN. The research found that ANNs can be used for predicting river flow gauge values but to improve the results a greater ensemble, additional data and different ANN structures may create a better performing model. For the ANN model to be used in practice the research needs to be extended to evaluate the whole catchment area and a range of rivers in South Africa. / Dissertation (MSc)--University of Pretoria, 2017. / Geography, Geoinformatics and Meteorology / MSc / Unrestricted
218

Fermion Low Modes in Lattice QCD: Topology, the η' Mass and Algorithm Development

Guo, Duo January 2021 (has links)
Lattice gauge theory is an important approach to understanding quantum chromodynamics (QCD) due to the large coupling constant in the theory at low energy. In this thesis, we report our study of the topological properties of the gauge fields and we calculate 𝘮_η and 𝘮_η' which are related to the topology of the gauge fields. We also develop two algorithms to speed up the inversion of the Dirac equation which is computationally demanding in lattice QCD calculations. The topology of lattice gauge fields is important but difficult to study because of the large local fluctuations of the gauge fields. In chapter 2, we probe the topological properties of the gauge fields through the measurement of closed quark loops, field strength and low-lying eigenvectors of the Shamir domain wall operator. The closed quark loops suggest the slow evolution of topological modes during the generation of QCD configurations. The chirality of the low-lying eigenvectors is studied and the lattice eigenvectors are compared to the eigenvectors in the continuous theory. The topological charges are calculated from the eigenvectors and the results agree with the topological charges calculated from the smoothed gauge fields. The fermion correlators are also obtained from the eigenvectors. The non-trivial topological properties of QCD gauge fields are important to the mass of the η and η', 𝘮_η and 𝘮_η'. Lattice QCD is an area where 𝘮_{\eta}$ and 𝘮_{\eta'}$ can be calculated by using gauge fields that are sampled over different topological sectors. We calculate 𝘮_η and 𝘮_η' in chapter 3 by including the fermion correlators and the topological charge density correlators. The errors of 𝘮_η and 𝘮_η' are reduced to the percent level and the mixing angle between the octet, singlet states in the SU(3) limit and the physical eigenstates is calculated. An algorithm that reduces communication and increases the usage of the local computational power is developed in chapter 4. The algorithm uses the multisplitting algorithm as a preconditioner in the preconditioned conjugate gradient method. It speeds up the inversion of the Dirac equation during the evolution phase. In chapter 5, we utilize two lattices, called the coarse lattice and the fine lattice, that lie on the renormalization group trajectory and have different lattice spacings. We find that the low-mode space of the coarse lattice corresponds to the low-mode space of the fine lattice. Because of the correspondence, the coarse lattice can be used to solve the low modes of the fine lattice. The coarse lattice is used in the restart algorithm and the preconditioned conjugate gradient algorithm where the latter is called the renormalization group based preconditioned conjugate gradient algorithm (RGPCG). By using the near-null vectors as the filter, RGPCG could reduce the operations of the matrix multiplications on the fine lattice by 33% to 44% for the inversion of Dirac equation. The algorithm works better than the conjugate gradient algorithm when multiple equations are solved.
219

A novel approach for the study of near conformal theories for electroweak symmetry breaking

Weinberg, Evan Solomon 28 November 2015 (has links)
The discovery of a light scalar at the Large Hadron Collider is in basic agreement with the predictions of an elementary Higgs in the Standard Model (SM). Nonetheless, a light, fundamental scalar is difficult to accommodate in the SM because quantum corrections suggest its mass should be much higher than the scale of electroweak symmetry breaking (EWSB). A natural possibility is to replace the Higgs by a strongly coupled composite. Composite dynamics also gives a natural explanation to the origin of EWSB. Phenomenologically viable composite models of EWSB are constrained by experiment to feature approximate scale invariance. This behavior may follow from near conformal dynamics. At present, lattice gauge theory (LGT) provides the only quantitative method to study near conformal composite Higgs dynamics in a fully consistent strongly coupled relativistic quantum field theory. As a novel approach to the question of finding and studying near conformal theories, I will apply LGT to the study of a generalization of Quantum ChromoDynamics (QCD) with four chiral fermion flavors plus eight flavors of finite, tunable mass. By continuously varying the mass of the eight heavy flavors, I can tune between the four flavor chirally broken theory, which exhibits features similar to QCD, and the twelve flavor theory, which is known to have a conformal fixed point. This is the "4+8 Model" for directly studying near-conformal behavior. In this dissertation, I will review modern composite phenomenology, followed by outlining a study of the 4+8 Model over a range of heavy flavor masses. As a check of near-conformal behavior, I will measure the scale dependent coupling with the method of the Wilson Flow. After verifying the existence of controllable, approximate scale invariance, I will measure the low energy particle spectrum of the 4+8 Model. This includes a Higgs-like light composite scalar. Throughout this dissertation I will make reference to LGT measurement code I wrote and contributed to the software package FUEL.
220

Introduction to lattice gauge theories

La Cock, Pierre January 1988 (has links)
Includes bibliographical references. / The thesis is organized as follows. Part I is a general introduction to LGT. The theory is discussed from first principles, so that for the interested reader no previous knowledge is required, although it is assumed that he/she will be familiar with the rudiments of relativistic quantum mechanics. Part II is a review of QCD on the lattice at finite temperature and density. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. To facilitate an understanding of the techniques used in LGT, provision has been made in the form of a separate Chapter on Group Theory and Integration, as well as four Appendices, one of which deals with Grassmann variables and integration.

Page generated in 0.056 seconds