• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gauss's theorem on sums of 3 squares sheaves, and Gauss composition / Le théorème de Gauss sur les sommes de 3 carrés, de faisceaux, et composition de Gauss

Gunawan, Albert 08 March 2016 (has links)
Le théorème de Gauss sur les sommes de 3 carrés relie le nombre de points entiers primitifs sur la sphère de rayon la racine carrée de n au nombre de classes d'un ordre quadratique imaginaire. En 2011, Edixhoven a esquissée une preuve du théorème de Gauss en utilisant une approche de la géométrie arithmétique. Il a utilisé l'action du groupe orthogonal spécial sur la sphère et a donné une bijection entre l'ensemble des SO3(Z)-orbites de tels points, si non vide, avec l'ensemble des classes d'isomorphisme de torseurs sous le stabilisateur. Ce dernier ensemble est un groupe, isomorphe au groupe des classes d'isomorphisme de modules projectifs de rang 1 sur l'anneau Z[1/2, √- n], ce qui donne une structure d'espace affine sur l'ensemble des SO3(Z)-orbites sur la sphère. Au chapitre 3 de cette thèse, nous donnons une démonstration complète du théorème de Gauss suivant les travaux d'Edixhoven. Nous donnons aussi une nouvelle preuve du théorème de Legendre sur l'existence d'une solution entière primitive de l'équation x2 + y2 + z2 = n en utilisant la théorie des faisceaux. Nous montrons au chapitre 4 comment obtenir explicitement l'action, donnée par la méthode des faisceaux, du groupe des classes sur l'ensemble des SO3(Z)-orbites sur la sphère en termes de SO3(Q). / Gauss's theorem on sums of 3 squares relates the number of primitive integer points on the sphere of radius the square root of n with the class number of some quadratic imaginary order. In 2011, Edixhoven sketched a different proof of Gauss's theorem by using an approach from arithmetic geometry. He used the action of the special orthogonal group on the sphere and gave a bijection between the set of SO3(Z)-orbits of such points, if non-empty, with the set of isomorphism classes of torsors under the stabilizer group. This last set is a group, isomorphic to the group of isomorphism classes of projective rank one modules over the ring Z[1/2, √- n]. This gives an affine space structure on the set of SO3(Z)-orbits on the sphere. In Chapter 3 we give a complete proof of Gauss's theorem following Edixhoven's work and a new proof of Legendre's theorem on the existence of a primitive integer solution of the equation x2 + y2 + z2 = n by sheaf theory. In Chapter 4 we make the action given by the sheaf method of the Picard group on the set of SO3(Z)-orbits on the sphere explicit, in terms of SO3(Q). / De stelling van Gauss over sommen van 3 kwadraten relateert het aantal primitieve gehele punten op de bol van straal de vierkantswortel van n aan het klassengetal van een bepaalde imaginaire kwadratisch orde. In 2011 schetste Edixhoven een ander bewijs van deze stelling van Gauss metbehulp van aritmetische meetkunde. Hij gebruikte de actie van de special orthogonale groep op de bol en gaf een bijectie tussen de verzameling van SO3(Z)-banen van dergelijke punten, als die niet leeg is, met de verzameling van isomor_e klassen van torsors onder de stabilisator groep. Deze laatste verzameling is een groep, isomorf met de groep van isomor_e klassen van projectieve rang _e_en modulen over de ring Z[1/2, √- n]. Dit geeft een a_ene ruimte structuur op de verzameling van SO3(Z)-banen op de bol. In Hoofdstuk 3 geven we een volledig bewijs van de stelling van Gauss zoals geschetst door Edixhoven, en een nieuw bewijs van Legendre's stelling over het bestaan van een primitieve gehele oplossing van de vergelijking x2 +y2 +z2 = n met schoven theorie. In hoofdstuk 4 maken we de werking gegeven door de schoven theorie van de Picard groep op de verzameling van SO3(Z)-banen op de bol expliciet, in termen van SO3(Q).
2

The gravitational Vlasov-Poisson system on the unit 2-sphere with initial data along a great circle

Lind, Crystal 27 August 2014 (has links)
The Vlasov-Poisson system is most commonly used to model the movement of charged particles in a plasma or of stars in a galaxy. It consists of a kinetic equation known as the Vlasov equation coupled with a force determined by the Poisson equation. The system in Euclidean space is well-known and has been extensively studied under various assumptions. In this paper, we derive the Vlasov-Poisson equations assuming the particles exist only on the 2-sphere, then take an in-depth look at particles which initially lie along a great circle of the sphere. We show that any great circle is an invariant set of the equations of motion and prove that the total energy, number of particles, and entropy of the system are conserved for circular initial distributions. / Graduate
3

Tópicos de geometria diferencial

Batista, Ricardo Alexandre [UNESP] 21 September 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-09-21Bitstream added on 2014-06-13T19:47:36Z : No. of bitstreams: 1 batista_ra_me_rcla.pdf: 818880 bytes, checksum: 6293c2c753e3d0bd5a6900cfc890944f (MD5) / O principal objetivo deste trabalho é confeccionar um texto para alunos de gradua ção na área de Ciências Exatas e da Terra concernente ao estudo da Curvatura Gaussiana e Aplicação de Gauss, Superfícies Mínimas, Teorema Egregium de Gauss e o Teorema de Gauss- Bonnet para curvas simples fechadas / The main objective from this work is to make a text for students of graduation in the area of exact sciences and of the land concerning to the study of the Gaussian Curvature and the Gauss Map, Minimal Surfaces, Gauss's Theorem Egregium and the Gauss-Bonnet Theorem for Simple Closed Curves
4

Tópicos de geometria diferencial /

Batista, Ricardo Alexandre. January 2011 (has links)
Orientador: João Peres Vieira / Banca: Eliris Cristina Rizziolli / Banca: Laércio Aparecido Lucas / Resumo: O principal objetivo deste trabalho é confeccionar um texto para alunos de gradua ção na área de Ciências Exatas e da Terra concernente ao estudo da Curvatura Gaussiana e Aplicação de Gauss, Superfícies Mínimas, Teorema Egregium de Gauss e o Teorema de Gauss- Bonnet para curvas simples fechadas / Abstract: The main objective from this work is to make a text for students of graduation in the area of exact sciences and of the land concerning to the study of the Gaussian Curvature and the Gauss Map, Minimal Surfaces, Gauss's Theorem Egregium and the Gauss-Bonnet Theorem for Simple Closed Curves / Mestre

Page generated in 0.0418 seconds