211 |
Image Distance Learning for Probabilistic Dose–Volume Histogram and Spatial Dose Prediction in Radiation Therapy Treatment Planning / Bilddistansinlärning för probabilistisk dos–volym-histogram- och dosprediktion inom strålbehandlingEriksson, Ivar January 2020 (has links)
Construction of radiotherapy treatments for cancer is a laborious and time consuming task. At the same time, when presented with a treatment plan, an oncologist can quickly judge whether or not it is suitable. This means that the problem of constructing these treatment plans is well suited for automation. This thesis investigates a novel way of automatic treatment planning. The treatment planning system this pipeline is constructed for provides dose mimicking functionality with probability density functions of dose–volume histograms (DVHs) and spatial dose as inputs. Therefore this will be the output of the pipeline. The input is historically treated patient scans, segmentations and spatial doses. The approach involves three modules which are individually replaceable with little to no impact on the remaining two modules. The modules are: an autoencoder as a feature extractor to concretise important features of a patient segmentation, a distance optimisation step to learn a distance in the previously constructed feature space and, finally, a probabilistic spatial dose estimation module using sparse pseudo-input Gaussian processes trained on voxel features. Although performance evaluation in terms of clinical plan quality was beyond the scope of this thesis, numerical results show that the proposed pipeline is successful in capturing salient features of patient geometry as well as predicting reasonable probability distributions for DVH and spatial dose. Its loosely connected nature also gives hope that some parts of the pipeline can be utilised in future work. / Skapandet av strålbehandlingsplaner för cancer är en tidskrävande uppgift. Samtidigt kan en onkolog snabbt fatta beslut om en given plan är acceptabel eller ej. Detta innebär att uppgiften att skapa strålplaner är väl lämpad för automatisering. Denna uppsats undersöker en ny metod för att automatiskt generera strålbehandlingsplaner. Planeringssystemet denna metod utvecklats för innehåller funktionalitet för dosrekonstruktion som accepterar sannolikhetsfördelningar för dos–volymhistogram (DVH) och dos som input. Därför kommer detta att vara utdatan för den konstruerade metoden. Metoden är uppbyggd av tre beståndsdelar som är individuellt utbytbara med liten eller ingen påverkan på de övriga delarna. Delarna är: ett sätt att konstruera en vektor av kännetecken av en patients segmentering, en distansoptimering för att skapa en distans i den tidigare konstruerade känneteckensrymden, och slutligen en skattning av sannolikhetsfördelningar med Gaussiska processer tränade på voxelkännetecken. Trots att utvärdering av prestandan i termer av klinisk plankvalitet var bortom räckvidden för detta projekt uppnåddes positiva resultat. De estimerade sannolikhetsfördelningarna uppvisar goda karaktärer för både DVHer och doser. Den löst sammankopplade strukturen av metoden gör det dessutom möjligt att delar av projektet kan användas i framtida arbeten.
|
Page generated in 0.0658 seconds