• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 12
  • 10
  • 10
  • 3
  • 1
  • Tagged with
  • 211
  • 211
  • 54
  • 51
  • 49
  • 45
  • 43
  • 40
  • 40
  • 37
  • 32
  • 29
  • 29
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Machine Learning Based Intraday Calibration of End of Day Implied Volatility Surfaces / Maskininlärnings baserad intradagskalibrering av slutet av dagen implicita volatilitetsytor

Herron, Christopher, Zachrisson, André January 2020 (has links)
The implied volatility surface plays an important role for Front office and Risk Management functions at Nasdaq and other financial institutions which require mark-to-market of derivative books intraday in order to properly value their instruments and measure risk in trading activities. Based on the aforementioned business needs, being able to calibrate an end of day implied volatility surface based on new market information is a sought after trait. In this thesis a statistical learning approach is used to calibrate the implied volatility surface intraday. This is done by using OMXS30-2019 implied volatility surface data in combination with market information from close to at the money options and feeding it into 3 Machine Learning models. The models, including Feed Forward Neural Network, Recurrent Neural Network and Gaussian Process, were compared based on optimal input and data preprocessing steps. When comparing the best Machine Learning model to the benchmark the performance was similar, indicating that the calibration approach did not offer much improvement. However the calibrated models had a slightly lower spread and average error compared to the benchmark indicating that there is potential of using Machine Learning to calibrate the implied volatility surface. / Implicita volatilitetsytor är ett viktigt vektyg för front office- och riskhanteringsfunktioner hos Nasdaq och andra finansiella institut som behöver omvärdera deras portföljer bestående av derivat under dagen men också för att mäta risk i handeln. Baserat på ovannämnda affärsbehov är det eftertraktat att kunna kalibrera de implicita volatilitets ytorna som skapas i slutet av dagen nästkommande dag baserat på ny marknadsinformation. I denna uppsats används statistisk inlärning för att kalibrera dessa ytor. Detta görs genom att uttnytja historiska ytor från optioner i OMXS30 under 2019 i kombination med optioner nära at the money för att träna 3 Maskininlärnings modeller. Modellerna inkluderar Feed Forward Neural Network, Recurrent Neural Network och Gaussian Process som vidare jämfördes baserat på data som var bearbetat på olika sätt. Den bästa Maskinlärnings modellen jämfördes med ett basvärde som bestod av att använda föregående dags yta där resultatet inte innebar någon större förbättring. Samtidigt hade modellen en lägre spridning samt genomsnittligt fel i jämförelse med basvärdet som indikerar att det finns potential att använda Maskininlärning för att kalibrera dessa ytor.
192

Damage And Fracture In Skin: Applications In Needle Insertion

Vivek Dharmangadan Sree (5930606) 08 February 2023 (has links)
<p>Subcutaneous injection through devices such as autoinjectors is a preferred delivery method for wide array of pharmaceuticals such as monoclonal antibodies. Needle insertion during drug delivery involves large deformation, damage, and fracture of the skin tissue and affects drug transport and uptake. Yet, our understanding of needle insertion biomechanics is limited, but is crucially important to create autoinjectors that lead to the least amount of pain, penetrate the skin to a desired depth, produce small lesions that minimize back flow of drug, and operate robustly even given the variability in the skin mechanics among individuals. Computational models of needle insertion lends itself as an excellent avenue for studying the biomechanics of injector- skin interactions and for proposing better device designs. This work is focused on introducing a comprehensive computational modeling framework for optimizing needle insertion by autoinjector devices, while addressing limitations in experimental data and constitutive modeling of damage and fracture mechanisms in skin</p>
193

Particle Filter Bridge Interpolation in GANs / Brygginterpolation med partikelfilter i GANs

Käll, Viktor, Piscator, Erik January 2021 (has links)
Generative adversarial networks (GANs), a type of generative modeling framework, has received much attention in the past few years since they were discovered for their capacity to recover complex high-dimensional data distributions. These provide a compressed representation of the data where all but the essential features of a sample is extracted, subsequently inducing a similarity measure on the space of data. This similarity measure gives rise to the possibility of interpolating in the data which has been done successfully in the past. Herein we propose a new stochastic interpolation method for GANs where the interpolation is forced to adhere to the data distribution by implementing a sequential Monte Carlo algorithm for data sampling. The results show that the new method outperforms previously known interpolation methods for the data set LINES; compared to the results of other interpolation methods there was a significant improvement measured through quantitative and qualitative evaluations. The developed interpolation method has met its expectations and shown promise, however it needs to be tested on a more complex data set in order to verify that it also scales well. / Generative adversarial networks (GANs) är ett slags generativ modell som har fått mycket uppmärksamhet de senaste åren sedan de upptäcktes för sin potential att återskapa komplexa högdimensionella datafördelningar. Dessa förser en komprimerad representation av datan där enbart de karaktäriserande egenskaperna är bevarade, vilket följdaktligen inducerar ett avståndsmått på datarummet. Detta avståndsmått möjliggör interpolering inom datan vilket har åstadkommits med framgång tidigare. Häri föreslår vi en ny stokastisk interpoleringsmetod för GANs där interpolationen tvingas följa datafördelningen genom att implementera en sekventiell Monte Carlo algoritm för dragning av datapunkter. Resultaten för studien visar att metoden ger bättre interpolationer för datamängden LINES som användes; jämfört med resultaten av tidigare kända interpolationsmetoder syntes en märkbar förbättring genom kvalitativa och kvantitativa utvärderingar. Den framtagna interpolationsmetoden har alltså mött förväntningarna och är lovande, emellertid fordras att den testas på en mer komplex datamängd för att bekräfta att den fungerar väl även under mer generella förhållanden.
194

Trajectory Prediction Using Gaussian Process Regression : Estimating Three Dynamical States Using Two Parameters / Positionsprediktering med Gaussisk Process Regression : Estimering av Tre Dynamiska Tillstånd Baserat på Två Parametrar

Hannebo, Ludvig January 2024 (has links)
In this thesis a Gaussian process regression (GPR) model and a Kalman filter (KF) model were developed and applied to a trajectory prediction problem. The main subject of the thesis is GPR, where the intended purpose of the KF is to compare it to the GPR model. The input data for the models consists of two noisy spherical angle coordinates of a moving target relative to a moving guided projectile. In order to perform trajectory predictions the models need to estimate the distance between the target and guided projectile since there are only two coordinates available and an estimation of three coordinates is desired. The distance estimation was done by a Low Speed Approximation. The trajectories investigated were harmonic-exponential, exponential-spiral and linear. The results showed issues with the hyperparameters of the GPR model which may be related to the preprocessing of the trajectory data. However, the GPR model did outperform the KF model when there was acceleration, despite the issues with the hyperparameters. The KF model outperformed the GPR model when the target trajectory behaved linearly. The results indicate that GPR has potential as a trajectory prediction algorithm. / I denna avhandling utvecklades och tillämpades en Gaussisk process regression (GPR)-modell och en Kalman Filter (KF)-modell på ett positionspredikteringsproblem. Huvudämnet för avhandlingen är GPR medan det avsedda syftet med KF är att jämföra den med GPR-modellen. Modellernas indata består av två brusiga sfäriska vinkelkoordinater av ett rörligt mål i förhållande till en styrd projektil. För att modellerna ska kunna utföra positionsprediktering så behöver avståndet mellan målet och den styrda projektilen skattas, eftersom det endast finns två tillgängliga koordinater och en uppskattning av tre koordinater önskas. Avståndsberäkningen gjordes baserat på ett antagande om att hastigheten för målet är liten relativt hastigheten för den styrda projektilen, i avhandlingen är denna approximation benämnd Low Speed Approximation. De undersökta banorna var harmonisk-exponentiell, exponentiell-spiral och linjär. Resultaten visade problem med hyperparametrarna för GPR-modellen, vilket kan vara relaterat till förbehandlingen av bandatan. Trots problem med hyperparametrarna så presterade GPR-modellen bättre än KF-modellen när det fanns acceleration. KF-modellen presterade bättre än GPR-modellen när målets bana betedde sig linjärt. Resultaten indikerar att GPR har potential som en algoritm för positionsprediktering.
195

Analyzing Lower Limb Motion Capture with Smartphone : Possible improvements using machine learning / Analys av rörelsefångst för nedre extremiteterna med smartphone : Möjliga förbättringar med hjälp av maskininlärning

Brink, Anton January 2024 (has links)
Human motion analysis (HMA) can play a crucial role in sports and healthcare by providing unique insights on movement mechanics in the form of objective measurements and quantitative data. Traditional, state of the art, marker-based techniques, despite their accuracy, come with financial and logistical barriers, and are restricted to laboratory settings. Markerless systems offer much improved affordability and portability, and can potentially be used outside of laboratories. However, these advantages come with a significant cost in accuracy. This thesis attempts to address the challenge of democratizing HMA by leveraging recent advances in smartphone technology and machine learning.\newline\newlineThis thesis evaluates two modalities of performing markerless HMA: Single smartphone using Apple Arkit, and multiple smartphone setup using OpenCap, and compares both to a state of the art multiple-camera marker-based system from Vicon. Additionally, this thesis presents and evaluates two approaches to improving the single smartphone modality: Employing a Gaussian Process Model (GPR), and a Long-short-term-memory (LSTM) neural network to refine the single smartphone data to align with the marker-based result. Specific movements were recorded simultaneously with all three modalities on 13 subjects to build a dataset. From this, GPR and LSTM models were trained and applied to refine the single camera modality data. Lower limb joint angles, and joint centers were evaluated across the different modalities, and analyzed for potential use in real-world applications. While the findings of this thesis are promising, as both the GPR and LSTM models improve the accuracy of Apple Arkit, and OpenCap providing accurate and consistent results. It is important to acknowledge limitations regarding demographic diversity and how real-world environmental factors may influence its application. This thesis contributes to the efforts in narrowing the gap between marker-based HMA methods, and more accessible solutions. / Rörelseanalys av människokroppen (HMA) kan spela en betydelsefull roll i både idrott och hälso- och sjukvården. Genom objektiv och kvantitativ data ger den unik insikt i mekaniken bakom rörelser. Traditionella, toppmoderna, markör-baserade tekniker är mycket precisa, men medför finansiella och logistikbaserade barriärer, och finns endast tillgängliga i laboratorier. Markör-fria system erbjuder mycket bättre pris, portabilitet och kan potentiellt användas utanför laboratorier. Dessa fördelar går dock hand i hand med en betydande minskning av nogrannhet. Denna avhandling försöker ta itu med utmaningen att demokratisera HMA genom att utnyttja de senaste framstegen inom smartphoneteknik och maskininlärning. Denna avhandling utvärderar två sätt att utföra markör-fri HMA: Genom att använda en smartphone som kör Apple Arkit, och en uppsättning med flera smartphones som kör OpenCap. Båda modaliteter jämförs med ett markör-baserat system som använder flera kameror, från Vicon. Dessutom presenteras och utvärderas två metoder för att förbättra modaliteten med endast en smartphone: Användning av en Gaussisk Process modell för Regression (GPR) och ett Long-short-term-memory (LSTM) neuronnät för att förbättra data från en smartphone modalititeten, så att det bättre överenstämmer med det markör-baserade resultatet. Specifika rörelser spelades in samtidigt med alla tre modaliteter på 13 försökspersoner för att bygga upp ett dataset. Utifrån detta tränades GPR- och LSTM-modeller och användas för att förbättra data från en kamera modaliteten (Apple Arkit). Ledvinklar och ledcentra för de nedre extremiteterna utvärderades i de olika modaliteterna och analyserades för potentiell använding i verkliga tillämpningar. Även om resultaten av denna avhandling är lovande, då både GPR- och LSTM-modellerna förbättrar nogrannheten hos Apple Arkit, och OpenCap ger korrekta och konsekventa resultat, så är det viktigt att erkänna begränsningarna när det gäller demografisk mångfald och hur miljöfaktorer i verkligheten kan påverka tillämpningen.
196

Accelerated Discovery of Multi-Principal Element Alloys and Wide Bandgap Semiconductors under Extreme Conditions

Saswat Mishra (19185079) 22 July 2024 (has links)
<p dir="ltr">Advancements in material science are accelerating technological evolution, driven by initiatives like the Materials Genome Project, which integrates computational and experi- mental strategies to expedite material discovery. In this work, we focus on the reliability of advanced materials under extreme conditions, a critical area for enhancing their technological applications.</p><p dir="ltr">Multi-principal component alloys (MPEAs) exhibit remarkable properties under extreme conditions. However, their vast compositional space makes a brute-force exploration of potential alloys prohibitive. We address this challenge by employing a Bayesian approach to explore the oxidation resistance of hundreds of alloys, applying computational techniques to accurately calculate and quantify errors in the melting temperatures of MPEAs, and investigating the compositional biases and short-range order in their nucleation behaviors.</p><p dir="ltr">Furthermore, we scrutinize the role of wide bandgap semiconductors, which are essential in high-power applications due to their superior breakdown voltage, drift velocity, and sheet charge density. The lack of lattice-matched substrates often results in strained films, which enhances piezoelectric effects crucial for device reliability. Our research advances the pre- diction of piezoelectric and dielectric responses as influenced by biaxial strain and doping in gallium nitride (GaN). Additionally, we delve into how various common defects affect the formation of trap states, significantly impacting the electronic properties of these materials. These studies offer significant advancements in understanding MPEAs and wide bandgap semiconductors under extreme conditions. We also provide foundational insights for developing robust and efficient materials essential for next-generation applications.</p>
197

Using topology and signature methods to study spatiotemporal data with machine learning / Att studera spatiotemporal data genom topologi, vägsignaturer och maskininlärning

Arthursson, Karl January 2023 (has links)
This thesis explores a new way to analyze spatiotemporal data. By combining topology, the path signature and machine learning a robust model to analyze swarming behavior over time is created. Using persistent homology a representation of spatial data is obtained and the path signature gives us a representation for how this changes over time. This representation allows us to compare samples even if they have different amounts of time steps and different length of the sequence. It is also resistant to noise in the spatial representation. Using this data is then used to train a gaussian process regressor to extract parameters that govern the movement of swarms. Our analysis shows that the tested method is a good candidate for analyzing spatiotemporal data and that it warrants further studies. / Detta examensarbete utforskar ett nytt sätt att analysera spatiotemporal data. Genom att kombinera topologi, vägsignaturer och maskininlärning skapas en robust modell för att analysera svärmar beter sig över tid. Genom persistent homology erhålls en representation av spatial data och dess vägsignatur ger oss en representation för hur detta förändras över tiden. Denna representation gör det möjligt för oss att jämföra data även om de har olika antal tidssteg och sekvenserna är olika långa. Den är också motståndskraftig mot brus i den spatiala representationen. Denna data används sedan för att träna en gaussisk process-regressor för att extrahera parametrar som styr svärmarnas rörelse. Vår analys visar att den testade metoden är en bra kandidat för att analysera spatiotemporal data och att den är värd att studera ytterligare.
198

Anatomically-guided Deep Learning for Left Ventricle Geometry Reconstruction and Cardiac Indices Analysis Using MR Images

Von Zuben, Andre 01 January 2023 (has links) (PDF)
Recent advances in deep learning have greatly improved the ability to generate analysis models from medical images. In particular, great attention is focused on quickly generating models of the left ventricle from cardiac magnetic resonance imaging (cMRI) to improve the diagnosis and prognosis of millions of patients. However, even state-of-the-art frameworks present challenges, such as discontinuities of the cardiac tissue and excessive jaggedness along the myocardial walls. These geometrical features are often anatomically incorrect and may lead to unrealistic results once the geometrical models are employed in computational analyses. In this research, we propose an end-to-end pipeline for a subject-specific model of the heart's left ventricle from Cine cMRI. Our novel pipeline incorporates the uncertainty originating from the segmentation methods in the estimation of cardiac indices, such as ejection fraction, myocardial volume changes, and global radial and longitudinal strain, during the cardiac cycle. First, we propose an anatomically-guided deep learning model to overcome the common segmentation challenges while preserving the advantages of state-of-the-art frameworks, such as computational efficiency, robustness, and abstraction capabilities. Our anatomically-guided neural networks include a B-spline head, which acts as a regularization layer during training. In addition, the introduction of the B-spline head contributes to achieving a robust uncertainty quantification of the left ventricle inner and outer walls. We validate our approach using human short-axis (SA) cMRI slices and later apply transfer learning to verify its generalization capabilities in swine long-axis (LA) cMRI slices. Finally, we use the SA and LA contours to build a Gaussian Process (GP) model to create inner and outer walls 3D surfaces, which are then used to compute global indices of cardiac functions. Our results show that the proposed pipeline generates anatomically consistent geometries while also providing a robust tool for quantifying uncertainty in the geometry and the derived cardiac indices.
199

Decision making under uncertainty

McInerney, Robert E. January 2014 (has links)
Operating and interacting in an environment requires the ability to manage uncertainty and to choose definite courses of action. In this thesis we look to Bayesian probability theory as the means to achieve the former, and find that through rigorous application of the rules it prescribes we can, in theory, solve problems of decision making under uncertainty. Unfortunately such methodology is intractable in realworld problems, and thus approximation of one form or another is inevitable. Many techniques make use of heuristic procedures for managing uncertainty. We note that such methods suffer unreliable performance and rely on the specification of ad-hoc variables. Performance is often judged according to long-term asymptotic performance measures which we also believe ignores the most complex and relevant parts of the problem domain. We therefore look to develop principled approximate methods that preserve the meaning of Bayesian theory but operate with the scalability of heuristics. We start doing this by looking at function approximation in continuous state and action spaces using Gaussian Processes. We develop a novel family of covariance functions which allow tractable inference methods to accommodate some of the uncertainty lost by not following full Bayesian inference. We also investigate the exploration versus exploitation tradeoff in the context of the Multi-Armed Bandit, and demonstrate that principled approximations behave close to optimal behaviour and perform significantly better than heuristics on a range of experimental test beds.
200

Machine Learning for Air Flow Characterization : An application of Theory-Guided Data Science for Air Fow characterization in an Industrial Foundry / Maskininlärning för Luftflödeskarakterisering : En applikation för en Teorivägledd Datavetenskapsmodell för Luftflödeskarakterisering i en Industrimiljö

Lundström, Robin January 2019 (has links)
In industrial environments, operators are exposed to polluted air which after constant exposure can cause irreversible lethal diseases such as lung cancer. The current air monitoring techniques are carried out sparely in either a single day annually or at few measurement positions for a few days.In this thesis a theory-guided data science (TGDS) model is presented. This hybrid model combines a steady state Computational Fluid Dynamics (CFD) model with a machine learning model. Both the CFD model and the machine learning algorithm was developed in Matlab. The CFD model serves as a basis for the airflow whereas the machine learning model addresses dynamical features in the foundry. Measurements have previously been made at a foundry where five stationary sensors and one mobile robot were used for data acquisition. An Echo State Network was used as a supervised learning technique for airflow predictions at each robot measurement position and Gaussian Processes (GP) were used as a regression technique to form an Echo State Map (ESM). The stationary sensor data were used as input for the echo state network and the difference between the CFD and robot measurements were used as teacher signal which formed a dynamic correction map that was added to the steady state CFD. The proposed model utilizes the high spatio-temporal resolution of the echo state map whilst making use of the physical consistency of the CFD. The initial applications of the novel hybrid model proves that the best qualities of these two models could come together in symbiosis to give enhanced characterizations.The proposed model could have an important role for future characterization of airflow and more research on this and similar topics are encouraged to make sure we properly understand the potential of this novel model. / Industriarbetare utsätts för skadliga luftburna ämnen vilket över tid leder till högre prevalens för lungsjukdomar så som kronisk obstruktiv lungsjukdom, stendammslunga och lungcancer. De nuvarande luftmätningsmetoderna genomförs årligen under korta sessioner och ofta vid få selekterade platser i industrilokalen. I denna masteruppsats presenteras en teorivägledd datavetenskapsmodell (TGDS) som kombinerar en stationär beräkningsströmningsdynamik (CFD) modell med en dynamisk maskininlärningsmodell. Både CFD-modellen och maskininlärningsalgoritmen utvecklades i Matlab. Echo State Network (ESN) användes för att träna maskininlärningsmodellen och Gaussiska Processer (GP) används som regressionsteknik för att kartlägga luftflödet över hela industrilokalen. Att kombinera ESN med GP för att uppskatta luftflöden i stålverk genomfördes första gången 2016 och denna modell benämns Echo State Map (ESM). Nätverket använder data från fem stationära sensorer och tränades på differensen mellan CFD-modellen och mätningar genomfördes med en mobil robot på olika platser i industriområdet. Maskininlärningsmodellen modellerar således de dynamiska effekterna i industrilokalen som den stationära CFD-modellen inte tar hänsyn till. Den presenterade modellen uppvisar lika hög temporal och rumslig upplösning som echo state map medan den också återger fysikalisk konsistens som CFD-modellen. De initiala applikationerna för denna model påvisar att de främsta egenskaperna hos echo state map och CFD används i symbios för att ge förbättrad karakteriseringsförmåga. Den presenterade modellen kan spela en viktig roll för framtida karakterisering av luftflöden i industrilokaler och fler studier är nödvändiga innan full förståelse av denna model uppnås.

Page generated in 0.057 seconds