• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation robuste de turbines pour les cycles organiques de Rankine (ORC) / Robust optimization of ORC turbine expanders

Bufi, Elio Antonio 14 December 2016 (has links)
Au cours des dernières années, le cycles organique de Rankine (ORC) ont reçu un grand intérêt de la communauté scientifique et technique en raison de sa capacité à récupérer de l'énergie à partir de sources de chaleur faible. Dans certaines applications, comme la récupération de chaleur des déchets (WHR), les plantes ORC doivent être aussi le plus compact possible en raison de contraintes géométriques et de poids. Récemment, ces questions ont été étudiées dans le but de promouvoir la technologie ORC pour moteur à combustion interne (ICE). L'idée de récupérer ce résidu d'énergie est pas nouvelle et dans les années 1970 la crise énergétique a encouragé le développement de petite ORC plants (1-10 kWe). En raison de la complexité moléculaire du fluides de travail , fort effets de gaz réel doivent être pris en compte en raison de la haute pression et la densité, si on le compare à un gaz idéal. Dans ces conditions, le fluide est connu comme gaz dense. Les gaz denses sont définis comme des vapeurs monophasés, caractérisé par des molécules complexes et avec importantes masses moléculaires. Le rôle de gaz dense dans la gaz dynamique des flux transsonique interne a été largement étudié pour son importance dans les turbomachines. Récemment, l'attention a été concentrée sur des turbines axiales, qui réduisent au minimum la taille du système, en comparaison avec les solutions radiales dans les mêmes rapports de pression et la chute d'enthalpie. Dans ce travail, une nouvelle méthodologie de conception de turbines ORC supersonique est proposé. Elle consiste dans un design à deux dimensions rapide et précise qui est réalisée pour stator et rotor avec une metode de caractéristique (MOC) étendue à une équation d'etat générique. Les effets visqueux sont pris en compte par l'introduction d'une correction turbulente appropriée de la couche limite compressible. Étant donné que les sources de chaleur proposées pour turbines ORC comprennent typiquement des sources d'énergie variables, comme la WHR des procédés industriels ou des applications automobiles, pour améliorer la faisabilité de cette technique, la résistance à des conditions variables d'entrée est prise en compte. L'optimisation numérique sous incertitudes est appelé Optimisation robuste (RO) et il surmonte la limitation de l'optimisation déterministe qui néglige l'effet des incertitudes dans les variables de design et / ou des paramètres de design. Pour mesurer la robustesse d'un nouveau design, les statistiques (la moyenne et la variance, ou écart-type) d'une réponse sont calculées dans le processus RO. Dans ce travail, la conception MOC des ORC aubes supersoniques est utilisé pour créer une profil de référence. Cela est optimisé grâce à une boucle RO. L'optimiseur stochastique est basée sur un modèle de krigeage bayésien de la réponse du système aux paramètres incertains, utilisé pour l'approximation des statistiques de la sortie du système, couplé à une algorithme genetique multi-objectif (NSGA). Une forme optimale qui maximise la moyenne et minimise la variance de l'efficacité isentropique est recherché. L'efficacité isentropique est évaluée au moyen de simulations RANS (Reynolds Average Navier-Stokes) de l'aube. Le comportement thermodynamique du fluide de travail est modélisée au moyen de l'équation d'etat de Peng-Robinson-stryjek-Vera. La forme de l'aube est paramétrée au moyen d'une approche Free Form Deformation. Pour accélérer le RO processus, une modèle de krigeage supplémentaire est construit pour la fonction multi-objectifs et une stratégie adaptif de remplissage basée sur le Multi Objective Expected Improvement es prise en compte afin d'améliorer la précision de krigeage à chaque génération de la NSGA. La forme robuste optimisé d'aube ORC est comparé aux résultats fournis par le MOC et l'optimiseur déterministe. / In recent years, the Organic Rankine Cycle (ORC) technology has received great interest from the scientific and technical community because of its capability to recover energy from low-grade heat sources. In some applications, as the Waste Heat Recovery (WHR), ORC plants need to be as compact as possible because of geometrical and weight constraints. Recently, these issues have been studied in order to promote the ORC technology for Internal Combustion Engine (ICE) applications. The idea to recover this residual energy is not new and the 1970s energy crisis encouraged the development of feasible ORC small-scale plants (1-10 kWe). Due to the molecular complexity of the working fluids, strong real gas effects have to be taken into account because of the high pressures and densities, if compared to an ideal gas. In these conditions the fluid is known as dense gas. Dense gases are defined as single phase vapors, characterized by complex molecules and moderate to large molecular weights. The role of dense gas dynamics in transonic internal flows has been widely studied for its importance in turbomachinery applications involved in low-grade energy exploitation, such as the ORC. Recently, the attention has been focused on axial turbines, which minimize the system size, if compared with radial solutions at the same pressure ratios and enthalpy drops. In this work, a novel design methodology for supersonic ORC axial impulse turbine stages is proposed. It consists in a fast, accurate two-dimensional design which is carried out for the mean-line stator and rotor blade rows of a turbine stage by means of a method of characteristic (MOC) extended to a generic equation of state. The viscous effects are taken into account by introducing a proper turbulent compressible boundary layer correction to the inviscid design obtained with MOC. Since proposed heat sources for ORC turbines typically include variable energy sources such as WHR from industrial processes or automotive applications, as a result, to improve the feasibility of this technology, the resistance to variable input conditions is taken into account. The numerical optimization under uncertainties is called Robust Optimization (RO) and it overcomes the limitation of deterministic optimization that neglects the effect of uncertainties in design variables and/or design parameters. To measure the robustness of a new design, statistics such as mean and variance (or standard deviation) of a response are calculated in the RO process. In this work, the MOC design of supersonic ORC nozzle blade vanes is used to create a baseline injector shape. Subsequently, this is optimized through a RO loop. The stochastic optimizer is based on a Bayesian Kriging model of the system response to the uncertain parameters, used to approximate statistics of the uncertain system output, coupled to a multi-objective non-dominated sorting genetic algorithm (NSGA). An optimal shape that maximizes the mean and minimizes the variance of the expander isentropic efficiency is searched. The isentropic efficiency is evaluated by means of RANS (Reynolds Average Navier-Stokes) simulations of the injector. The fluid thermodynamic behavior is modelled by means of the well-known Peng-Robinson-Stryjek-Vera equation of state. The blade shape is parametrized by means of a Free Form Deformation approach. In order to speed-up the RO process, an additional Kriging model is built to approximate the multi-objective fitness function and an adaptive infill strategy based on the Multi Objective Expected Improvement for the individuals is proposed in order to improve the surrogate accuracy at each generation of the NSGA. The robustly optimized ORC expander shape is compared to the results provided by the MOC baseline shape and the injector designed by means of a standard deterministic optimizer.
2

ANALYSIS AND OPTIMIZATION OF DENSE GAS FLOWS: APPLICATION TO ORGANIC RANKINE CYCLES TURBINES

Congedo, Pietro Marco 18 July 2007 (has links) (PDF)
This thesis presents an accurate study about the fluid-dynamics of dense gases and their potential application as working fluids in Organic Rankine Cycles (ORCs). The ORCs are similar to a steam Rankine Cycle where an organic fluid is used instead of steam, which ensures better efficiency for low-temperature sources. Specific interest is developed into a particular class of dense gases, the Bethe-Zel'dovich-Thompson (BZT) fluids, which exhibit negative values of the Fundamental Derivative of Gasdynamics G in the vapor phase , for a range of temperatures and pressures of the order of magnitude of those of the liquid/vapor critical point, just above the upper coexistence curve. Transonic and supersonic flows in a region of negative G are characterized by nonclassical gasdynamic behaviors, such as the disintegration of compression shocks. Owing to this effect, the use of BZT gases as working fluids in ORCs is particularly attractive, since it may reduce losses due to wave drag and shock/boundary layer interactions. This advantage can be further improved by a proper design of the turbine blade. The present work is devoted to improve the understanding of the peculiar fluid-dynamic behavior of dense gases with respect perfect ones and to the research of suitable aerodynamic shapes. To this purpose, a dense-gas Navier-Stokes (NS) numerical solver is coupled with a multi-objective genetic algorithm. The Navier-Stokes solver employs equations of state of high accuracy within the thermodynamic region of interest and suitable thermophysical models for the fluid viscosity and thermal conductivity. Different computations are performed for transonic flows over isolated airfoils and through turbine cascades to evaluate the influence of the upstream kinematic and thermodynamic conditions on the flow patterns and the system efficiency, and possible advantages deriving from the use of a non-conventional working fluid are pointed out. Then, high performance airfoils and turbine blade shapes for transonic flows of BZT fluids are constructed using the CFD solver coupled with a multi-objective genetic algorithm. Shape optimization allows to strongly increase flow critical Mach Number, delaying the appearance of shock waves, while ensuring high lift (for an airfoil) and efficiency. A careful analysis of the convergence behavior of Genetic Algorithms has also been undertaken by means of statistical tools. Genetic Algorithm exhibit a marked sensitivity to the shape of the response surface and to its numerical representation. Some strategies are proposed to systematically evaluate GAs convergence capabilities for a given problem and to enhance their convergence properties for dense gas optimization problems.
3

Simulation numérique d'écoulements turbulents de gaz dense / Numerical simulation of turbulent dense gas flows

Sciacovelli, Luca 13 December 2016 (has links)
Les écoulements turbulents de gaz denses, qui sont d’un grand intérêt pour un large éventail d'applications, sont le siège de phénomènes physiques encore peu connus et difficiles à étudier par des approches expérimentale. Dans ce travail, nous étudions pour la première fois l’influence des effets de gaz denses sur la structure de la turbulence compressible à l’aide de simulations numériques. Le fluide considéré est le PP11, un fluorocarbure lourd, dont le comportement thermodynamique a été représenté à l’aide de différentes lois d’état, afin de quantifier la sensibilité des solutions aux choix de modélisation. Nous avons considéré d’abord la décroissance d’une turbulence homogène isotrope compressible. Les fluctuations de température sont négligeables, alors que celles de la vitesse du son sont importantes à cause de leur forte dépendance de la densité. Le comportement particulier de la vitesse du son modifie de manière significative la structure de la turbulence, conduisant à la formation de shocklets de détente. L’analyse de la contribution des différentes structures à la dissipation d’énergie et à la génération d’enstrophie montre que, pour un gaz dense, les régions de forte dilatation jouent un rôle similaire à celles de forte compression, contrairement aux gaz parfaits, dans lesquels le comportement est fortement dissymétrique. Ensuite, nous avons mené des simulations numériques pour une configuration de canal plan en régime supersonique, pour plusieurs valeurs des nombres de Mach et de Reynolds. Les résultats confirment la validité de l’hypothèse de Morkovin. L’introduction d’une loi d’échelle semi-locale prenant en compte le variations de densité et viscosité, permet de comparer les profils des grandeurs turbulentes (contraintes de Reynolds, anisotropie, budgets d’énergie) avec ces observés en gaz parfait. Les variables thermodynamiques, quant à elles, présentent une évolution très différente pour un gaz parfait et pour un gaz dense, la chaleur spécifique élevée de ce dernier conduisant à un découplage des effets dynamiques et thermiques et à un comportement proche de celui d’un fluide incompressible avec des propriétés variables. / Dense gas turbulent flows, of great interest for a wide range of engineering applications, exhibit physical phenomena that are still poorly understood and difficult to reproduce experimentally. In this work, we study for the first time the influence of dense gas effects on the structure of compressible turbulence by means of numerical simulations. The fluid considered is PP11, a heavy fluorocarbon, whose thermodynamic behavior is described by means of different equations of state to quantify the sensitivity of solutions to modelling choices. First, we considered the decay of compressible homogeneous isotropic turbulence. Temperature fluctuations are found to be negligible, whereas those of the speed of sound are large because of the strong dependence on density. The peculiar behavior of the speed of sound significantly modifies the structure of the turbulence, leading to the occurrence of expansion shocklets. The analysis of the contribution of the different structures to energy dissipation and enstrophy generation shows that, for a dense gas, high expansion regions play a role similar to high compression ones, unlike perfect gases, in which the observed behaviour is highly asymmetric. Then, we carried out numerical simulations of a supersonic turbulent channel flow for several values of Mach and Reynolds numbers. The results confirm the validity of the Morkovin' hypothesis. The introduction of a semi-local scaling, taking into account density and viscosity variations across the channel, allow to compare the wall-normal profiles of turbulent quantities (Reynolds stresses, anisotropy, energy budgets) with those observed in ideal gases. Nevertheless, the thermodynamic variables exhibit a different evolution between perfect and dense gases, since the high specific heats of the latter lead to a decoupling of dynamic and thermal effects, and to a behavior close to that of variable property incompressible fluids.

Page generated in 0.0773 seconds