• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oligomer cross-linked gelatin hydrogels for peripheral nerve regeneration

Kohn-Polster, Caroline 08 May 2020 (has links)
The use of autografts is the gold standard for peripheral nerve regeneration (PNR) while biomedical engineering made some contributions to improve PNR. A next generation of nerve guidance conduits (NGC) is required to transmit topographical and biochemical signals towards severed nerves. In this thesis, the gelatin hydrolyzate Collagel® (COL) and anhydride-containing cross-linkers (oPNMA, oPDMA) were used to fabricate crosslinked hydrogels (cGEL) for PNR. At first, established cGEL formulations were adjusted towards an injection-molding tool with static mixer. Therefore, the gelation kinetic was modified by variation of the gelation base. Hence, high reactive oPNMA was available for fabrication of robust cGEL based NGC. Secondly, novel cGEL and molding technique were adapted towards the fabrication of cGEL-based filler for polymer-derived braided NGC. Shear-thinning filler was developed that allowed direct application inside the conduit lumen with minimal mechanical stiffness but sufficient scaffolding properties. Besides pristine filler, chemically modified filler was designed with a small mimetic of the nerve growth factor, LM11A-31, that was grafted to oPNMA. In a rat sciatic nerve model, the performance of this derivatized filler was comparable to the control and underlined the potential of chemical cues in PNR. A number of small diamines were further integrated into oPNMA and oPDMA to modify cGEL bulk. In addition to chemical feasibility, the cytocompatibility and cellular response were tested on L929 mouse fibroblasts and human adipose-derived stem cells. The functionalization showed an impact on the cell behavior with differences in cell proliferation, migration and spreading. Finally, modified oPNMA-derived hydrogels were tested on neonatale Schwann cells. The cell viability and extension was maintained in all hydrogels while the impact of LM11A-31 was not as pronounced. This thesis emphasizes the potential of cGEL hydrogels in nerve implants as fillers or conduits and, thus, is a promising building block for a new generation of NGC.
2

DESIGN AND CHARACTERIZATION OF GELATIN HYDROGELS INCORPORATING LOW-MOLECULAR-WEIGHT DRUGS FOR TISSUE REGENERATION / 組織再生のための低分子薬物含有ゼラチンハイドロゲルの創製と評価

Saito, Takashi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19010号 / 工博第4052号 / 新制||工||1623(附属図書館) / 31961 / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 田畑 泰彦, 教授 岩田 博夫, 教授 木村 俊作 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

Engineering pathological microenvironments for cardiovascular disease studies

Adhikari, Ojaswee 13 December 2019 (has links)
Food insecurity is a growing issue in the United States. Iron deficiency is the most common form of nutritional deficiency in patients with endothelial dysfunction and vascular-related diseases. This preliminary study lays the groundwork for the “Nutrient deficiency-on-a-chip” model. Endothelial cells are cultured on mechanically tunable, enzymatically cross-linked gelatin and treated with deferoxamine, an iron chelator, or angiotensin II were used to simulate a nutrient deficient and diseased environment, respectively. As oxidative stress and disturbed barrier function are the most prevailing mechanism of angiotensin II and iron deficiency induced endothelial dysfunction, to test our model we investigated the changes in reactive oxygen species production and VE-cadherin expression in engineered endothelium. Both angiotensin II and deferoxamine treated engineered endothelium showed an increase in oxidative stress and disturbed barrier function. This in vitro model can be a useful tool to better understand disease mechanisms associated with nutrient deficiency and identify novel therapeutics.
4

Electron Beam-Treated Enzymatically Mineralized Gelatin Hydrogels for Bone Tissue Engineering

Riedel, Stefanie, Ward, Daniel, Kudláˇcková, Radmila, Mazur, Karolina, Baˇcáková, Lucie, Kerns, Jemma G., Allinson, Sarah L., Ashton, Lorna, Koniezcny, Robert, Mayr, Stefan G., Douglas, Timothy E. L. 05 May 2023 (has links)
Biological hydrogels are highly promising materials for bone tissue engineering (BTE) due to their high biocompatibility and biomimetic characteristics. However, for advanced and customized BTE, precise tools for material stabilization and tuning material properties are desired while optimal mineralisation must be ensured. Therefore, reagent-free crosslinking techniques such as high energy electron beam treatment promise effective material modifications without formation of cytotoxic by-products. In the case of the hydrogel gelatin, electron beam crosslinking further induces thermal stability enabling biomedical application at physiological temperatures. In the case of enzymatic mineralisation, induced by Alkaline Phosphatase (ALP) and mediated by Calcium Glycerophosphate (CaGP), it is necessary to investigate if electron beam treatment before mineralisation has an influence on the enzymatic activity and thus affects the mineralisation process. The presented study investigates electron beam-treated gelatin hydrogels with previously incorporated ALP and successive mineralisation via incubation in a medium containing CaGP. It could be shown that electron beam treatment optimally maintains enzymatic activity of ALP which allows mineralisation. Furthermore, the precise tuning of material properties such as increasing compressive modulus is possible. This study characterizes the mineralised hydrogels in terms of mineral formation and demonstrates the formation of CaP in dependence of ALP concentration and electron dose. Furthermore, investigations of uniaxial compression stability indicate increased compression moduli for mineralised electron beam-treated gelatin hydrogels. In summary, electron beam-treated mineralized gelatin hydrogels reveal good cytocompatibility for MG-63 osteoblast like cells indicating a high potential for BTE applications.

Page generated in 0.0909 seconds