• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectral karyotyping of human, mouse, rat and ape chromosomes – applications for genetic diagnostics and research

Schröck, Evelin, Zschieschang, P., O’Brien, Peter, Helmrich, Anne, Hardt, T., Matthaei, A., Stout-Weider, Karen 20 March 2014 (has links) (PDF)
Spectral karyotyping (SKY) is a widely used methodology to identify genetic aberrations. Multicolor fluorescence in situ hybridization using chromosome painting probes in individual colors for all metaphase chromosomes at once is combined with a unique spectral measurement and analysis system to automatically classify normal and aberrant chromosomes. Based on countless studies and investigations in many laboratories worldwide, numerous new chromosome translocations and other aberrations have been identified in clinical and tumor cytogenetics. Thus, gene identification studies have been facilitated resulting in the dissection of tumor development and progression. For example, different translocation partners of the TEL/ETV6 transcription factor that is specially required for hematopoiesis within the bone marrow were identified. Also, the correct classification of complex karyotypes of solid tumors supports the prognostication of cancer patients. Important accomplishments for patients with genetic diseases, leukemias and lymphomas, mesenchymal tumors and solid cancers are summarized and exemplified. Furthermore, studies of disease mechanisms such as centromeric DNA breakage, DNA double strand break repair, telomere shortening and radiation-induced neoplastic transformation have been accompanied by SKY analyses. Besides the hybridization of human chromosomes, mouse karyotyping has also contributed to the comprehensive characterization of mouse models of human disease and for gene therapy studies. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
2

Spectral karyotyping of human, mouse, rat and ape chromosomes – applications for genetic diagnostics and research

Schröck, Evelin, Zschieschang, P., O’Brien, Peter, Helmrich, Anne, Hardt, T., Matthaei, A., Stout-Weider, Karen January 2006 (has links)
Spectral karyotyping (SKY) is a widely used methodology to identify genetic aberrations. Multicolor fluorescence in situ hybridization using chromosome painting probes in individual colors for all metaphase chromosomes at once is combined with a unique spectral measurement and analysis system to automatically classify normal and aberrant chromosomes. Based on countless studies and investigations in many laboratories worldwide, numerous new chromosome translocations and other aberrations have been identified in clinical and tumor cytogenetics. Thus, gene identification studies have been facilitated resulting in the dissection of tumor development and progression. For example, different translocation partners of the TEL/ETV6 transcription factor that is specially required for hematopoiesis within the bone marrow were identified. Also, the correct classification of complex karyotypes of solid tumors supports the prognostication of cancer patients. Important accomplishments for patients with genetic diseases, leukemias and lymphomas, mesenchymal tumors and solid cancers are summarized and exemplified. Furthermore, studies of disease mechanisms such as centromeric DNA breakage, DNA double strand break repair, telomere shortening and radiation-induced neoplastic transformation have been accompanied by SKY analyses. Besides the hybridization of human chromosomes, mouse karyotyping has also contributed to the comprehensive characterization of mouse models of human disease and for gene therapy studies. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0127 seconds