• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 42
  • 42
  • 27
  • 26
  • 25
  • 18
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrogenetherapy of established B16 murine melanoma by using an expression plasmid for HIV-1 viral protein R /

McCray, Andrea Nicole. January 2006 (has links)
Dissertation (Ph.D.)--University of South Florida, 2006. / Includes vita. Includes bibliographical references (leaves 91-99). Also available online.
12

The role of Vpr in cell-cycle regulation by diverse primate lentiviruses /

Stivahtis, Gina Lynn. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 92-115).
13

Functional interactions of HIV-1 GAg with the cellular endocytic pathway /

Valiathan, Rajeshwari Rajan. January 2007 (has links)
Thesis (Ph. D.)--Cornell University, May, 2007. / Vita. Includes bibliographical references.
14

TAT-streptavidin : a novel drug delivery vector for the intracellular uptake of macromolecular cargo /

Albarran, Brian. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 108-121).
15

Characteristics of human immunodeficiency virus type-1 envelope at infection and reinfection in a cohort of Kenyan women /

Chohan, Bhavna H. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 132-154).
16

Designing immunogens to elicit broadly reactive neutralizing antibodies to the HIV envelope /

Derby, Nina Rafterman, January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 155-209).
17

Human immunodeficiency virus type I (HIV-1) envelope evolution and the relationship to neutralizing antibodies /

Blay, Wendy Marie, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 115-136).
18

Tissue Compartmentalization and Tropism of HIV-1: A Dissertation

Brese, Robin L. 10 August 2016 (has links)
Despite the development of effective antiretroviral treatments, there is still no cure for HIV-1. Major barriers to HIV-1 eradication include the diversity of intrapatient viral quasispecies and the establishment of reservoirs in tissue sanctuary sites. A better understanding of these populations is required for targeted treatments. While previous studies have examined the relationship between brain and blood or immune tissues, few have looked at and compared the properties of viruses from other tissue compartments. In this study, 75 full length HIV-1 envelopes were isolated from the frontal lobe, occipital lobe, parietal lobe, colon, lung, and lymph node of an HIV-1 infected subject. No envelopes could be amplified from the plasma or serum. Envelopes were subjected to genotypic and phenotypic characterization. Of the 75 envelopes, 53 were able to infect HeLa TZM-bl cells. The greatest proportion of non-functional envelopes was from the lung, a result of APOBEC-induced hypermutation. Lower frequencies of hypermutation were also observed in the occipital lobe and colon. Envelopes from regions of the brain were almost all macrophage tropic, while those from the body were predominantly non-macrophage tropic. All envelopes used CCR5 as a coreceptor. Phylogenetic analyses showed that sequences were compartmentalized inside the brain. These findings were also observed using PacBio next generation sequencing to examine 32,152 full length sequences. Envelopes from tissues of the body displayed greater variation in sequence length, charge, and number of potential N-linked glycosylation sites in comparison to envelopes from tissues of the brain. Increased variation was also observed in IC50s for inhibition and neutralization assays using sCD4, maraviroc, b12, PG16, 17b, and 447-52D. The increased variation observed in envelopes from tissues outside the brain suggests that different pressures may be influencing the evolution of these viruses and emphasizes the importance of further studies in these tissue sites.
19

Characterization of Envelope-Specific Antibody Response Elicited by HIV-1 Vaccines: A Dissertation

Chen, Yuxin 06 January 2015 (has links)
Despite 30 years of intensive research,an effective human immunodeficiency virus (HIV) vaccine still remains elusive. The desirable immune response capable of providing protection against HIV acquisition is still not clear. The accumulating evidence learned from a recent vaccine efficacy correlate study not only confirmed the importance of antibody responses, but also highlighted potential protective functions of antibodies with a broad repertoire of HIV-1 epitope specificities and a wide range of different antiviral mechanisms. This necessitates a deep understanding of the complexity and diversity of antibody responses elicited by HIV-1 vaccines. My dissertation characterizes antibody response profiles of HIV-1 Env antibodies elicited by several novel immunogens or different immunization regimens, in terms of magnitude, persistence, epitope specificity, binding affinity, and biological function. First, to overcome the challenge of studying polyclonal sera without established assays, we expanded a novel platform to isolate Env-specific Rabbit mAbs (RmAb) elicited by DNA prime-protein boost immunization. These RmAbs revealed diverse epitope specificity and cross-reactivity against multiple gp120 antigens from more than one subtype, and several had potent and broad neutralizing activities against sensitive Tier 1 viruses. Further, structural analysis of two V3 mAbs demonstrated that a slight shift of the V3 epitope might have a dramatic impact on their neutralization activity. All of these observations provide a useful tool to study the induction of a desired type of antibody by different immunogens or different immunization regimens. Since heavily glycosylated HIV Env protein is a critical component of an HIV vaccine, we wanted to determine the impact of the HIV Env-associated glycan shield on antibody responses. We were able to produce Env proteins with a selective and homogeneous pattern of N-glycosylation using a glycoengineered yeast cell line. Antigenicity of these novel Env proteins was examined by well-characterized human mAbs. Immunogenicity studies showed that they were immunogenic and elicited gp120- specific antibody responses. More significantly, sera elicited by glycan-modified gp120 protein immunogens revealed better neutralizing activities and increased diversity of epitopes compared to sera elicited by traditional gp120 produced in Chinese Hamster Ovary (CHO) cells. Further, we examined the impact of the delivery order of DNA and protein immunization on antibody responses. We found that DNA prime-protein boost induced a comparable level of Env-specific binding Abs at the peak immunogenicity point to codelivery of DNA. However, antibody responses from DNA prime-protein boost had high avidity and diverse specificities, which improved potency and breadth of neutralizing Abs against Tier 1 viruses. Our data indicate that DNA vaccine priming of the immune system is essential for generation of high-quality antibodies. Additionally, we determined the relative immunogenicity of gp120 and gp160 Env in the context of DNA prime-protein boost vaccination to induce high-quality antibody responses. Immunized sera from gp120 DNA primed animals, but not those primed with gp160 DNA, presented with distinct antibody repertoire specificities, a high magnitude of CD4 binding site-directed binding capabilities as well as neutralizing activities. We confirmed the importance of using the gp120 Env form at the DNA priming phase, which directly determined the quality of antibody response.
20

FC Receptor-Mediated Activities of Env-Specific Monoclonal Antibodies Generated from Human Volunteers Receiving a DNA Prime-Protein Boost HIV Vaccine: A Dissertation

Costa, Matthew R. 12 October 2016 (has links)
Human immunodeficiency type 1 (HIV-1) is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years’ infection and as a result, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that a moderate protection is possible, which may correlate with antibody dependent cellular cytotoxicity (ADCC) activity. Previous studies in the Lu lab demonstrated that in an HIV-1 vaccine phase I trial, DP6-001, a polyvalent Env DNA prime-protein boost formulation, could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities along with multiple Fc mediated effector functions. I developed a protocol for the production and analysis of HIV-1 Env-specific human monoclonal antibodies (mAbs) isolated from these DP6-001 vaccinees. By utilizing a labeled gp120 bait to isolate Env specific B cells, paired heavy and light chain immunoglobulin (Ig) genes were cloned and allowed for the production of monoclonal antibodies with specificity for gp120. By using this protocol, 13 isolated mAbs from four DP6-001 vaccinees showed broad binding activities to gp120 proteins of diverse subtypes, both autologous and heterologous to vaccine immunogens, with mostly conformational epitopes and a few V3 and C5 specific mAbs. Equally cross-reactive Fc-mediated functional activities, including ADCC and antibody dependent cellular phagocytosis (ADCP), were present with both immune sera and isolated mAbs, confirming the induction of non-neutralizing functional antibodies by the DNA prime- protein boost vaccination. Elicitation of broadly reactive mAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV-1 vaccine design.

Page generated in 0.0874 seconds