• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 42
  • 42
  • 27
  • 26
  • 25
  • 18
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Co-evolution of HIV-1 Protease and its Substrates: A Dissertation

Kolli, Madhavi 13 November 2009 (has links)
Drug resistance is the most important factor that influences the successful treatment of individuals infected with the human immunodeficiency virus type 1 (HIV-1), the causative organism of the acquired immunodeficiency syndrome (AIDS). Tremendous advances in our understanding of HIV and AIDS have led to the development of Highly Active Antiretroviral Therapy (HAART), a combination of drugs that includes HIV-1 reverse transcriptase, protease, and more recently, integrase and entry inhibitors, to combat the virus. Though HAART has been successful in reducing AIDS-related morbidity and mortality, HIV rapidly evolves resistance leading to therapy failure. Thus, a better understanding of the mechanisms of resistance will lead to improved drugs and treatment regimens. Protease inhibitors (PIs) play an important role in anti-retroviral therapy. The development of resistance mutations within the active site of the protease greatly reduces its affinity for the protease inhibitors. Frequently, these mutations reduce catalytic efficiency of the protease leading to an overall reduction in viral fitness. In order to overcome this loss in fitness the virus evolves compensatory mutations within the protease cleavage sites that allow the protease to continue to recognize and cleave its substrates while lowering affinity for the PIs. Improved knowledge of this substrate co-evolution would help better understand how HIV-1 evolves resistance and thus, lead to improved therapeutic strategies. Sequence analyses and structural studies were performed to investigate co-evolution of HIV-1 protease and its cleavage sites. Though a few studies reported the co-evolution within Gag, including the protease cleavage sites, a more extensive study was lacking, especially as drug resistance was becoming increasingly severe. In Chapter II, a small set of viral sequences from infected individuals were analyzed for mutations within the Gag cleavage sites that co-occurred with primary drug resistance mutations within the protease. These studies revealed that mutations within the p1p6 cleavage site coevolved with the nelfinavir-resistant protease mutations. As a result of increasing number of infected individuals being treated with PIs leading to the accumulation of PI resistant protease mutations, and with increasing efforts at genotypic and phenotypic resistance testing, access to a larger database of resistance information has been made possible. Thus in Chapter III, over 39,000 sequences were analyzed for mutations within NC-p1, p1-6, Autoproteolysis, and PR-RT cleavage sites and several instances of substrate co-evolution were identified. Mutations in both the NC-p1 and the p1-p6 cleavage sites were associated with at least one, if not more, primary resistance mutations in the protease. Previous studies have demonstrated that mutations within the Gag cleavage sites enhance viral fitness and/or resistance when they occur in combination with primary drug resistance mutations within the protease. In Chapter III viral fitness in the presence and absence of cleavage site mutations in combination with primary drug resistant protease mutations was analyzed to investigate the impact of the observed co-evolution. These studies showed no significant changes in viral fitness. Additionally in Chapter III, the impact of these correlating mutations on phenotypic susceptibilities to various PIs was also analyzed. Phenotypic susceptibilities to various PIs were altered significantly when cleavage site mutations occurred in combination with primary protease mutations. In order to probe the underlying mechanisms for substrate co-evolution, in Chapter IV, X-ray crystallographic studies were performed to investigate structural changes in complexes of WT and D30N/N88D protease variants and the p1p6 peptide variants. Peptide variants corresponding to p1p6 cleavage site were designed, and included mutations observed in combination with the D30N/N88D protease mutation. Structural analyses of these complexes revealed several correlating changes in van der Waals contacts and hydrogen bonding as a result of the mutations. These changes in interactions suggest a mechanism for improving viral fitness as a result of co-evolution. This thesis research successfully identified several instance of co-evolution between primary drug resistant mutations in the protease and mutations within NC-p1 and p1p6 cleavage sites. Additionally, phenotypic susceptibilities to various PIs were significantly altered as a result of these correlated mutations. The structural studies also provided insights into the mechanism underlying substrate co-evolution. These data advance our understanding of substrate co-evolution and drug resistance, and will facilitate future studies to improve therapeutic strategies.
32

Identification of the Function of the Vpx Protein of Primate Lentiviruses: A Dissertation

Zhu, Xiaonan 14 December 2009 (has links)
Primate lentiviruses encode four “accessory proteins” including Vif, Vpu, Nef, and Vpr/ Vpx. Vif and Vpu counteract the antiviral effects of cellular restrictions to early and late steps in the viral replication cycle. The functions of Vpx/ Vpr are not well understood. This study presents evidence that the Vpx proteins of HIV-2/ SIVSMpromote HIV-1 infection by antagonizing an antiviral restriction in myeloid cells. Fusion of macrophages in which Vpx was essential for virus infection, with COS cells in which Vpx was dispensable for virus infection, generated heterokaryons that supported infection by wild-type SIV but not Vpx-deleted SIV. The restriction potently antagonized infection of macrophages by HIV-1, and expression of Vpx in macrophages in transovercame the restriction to HIV-1 and SIV infection. Similarly, the cellular restriction is the obstacle to transduction of macrophages by MLV. Neutralization of the restriction by Vpx rendered macrophages permissive to MLV infection. Vpx was ubiquitylated and both ubiquitylation and the proteasome regulated the activity of Vpx. The ability of Vpx to counteract the restriction to HIV-1 and SIV infection was dependent upon the HIV-1 Vpr interacting protein, damaged DNA binding protein 1 (DDB1), and DDB1 partially substituted for Vpx when fused to Vpr. This study further demonstrates that this restriction prevents transduction of quiescent monocytes by HIV-1. Although terminally differentiated macrophages are partially permissive to HIV-1, quiescent monocytes, which are macrophage precursors, are highly refractory to lentiviral infection. Monocyte-HeLa heterokaryons were resistant to HIV-1 infection, while heterokaryons formed between monocytes and HeLa cells expressing Vpx were permissive to HIV-1 infection, suggesting the resistance of quiescent monocytes to HIV-1 transduction is governed by a restriction factor. Encapsidation of Vpx within HIV-1 virions conferred the ability to infect quiescent monocytes. Introduction of Vpx into monocytes by pre-infection also rendered quiescent monocytes permissive to HIV-1 infection. Infection of monocytes by HIV-1 either with or without Vpx did not have an effect on temporal expression of CD71. In addition, Vpx increased permissivity of CD71– and CD71+cells to HIV-1 infection with no apparent bias. These results confirm that Vpx directly renders undifferentiated monocytes permissive to HIV-1 transduction without inducing their differentiation. The introduction of Vpx did not significantly alter APOBEC3G complex distribution, suggesting a restriction other than APOBEC3G was responsible for the resistance of monocytes to HIV-1. Collectively our results indicate that macrophages and monocytes harbor a potent antiviral restriction that is counteracted by the Vpx protein. The relative ability of primate lentiviruses and gammaretroviruses to transduce non-dividing myeloid-cells is dependent upon their ability to neutralize this restriction.
33

Pathogenesis of HIV-1 nef in adult mice

Rahim, Mir Munir Ahmed, 1975- January 2008 (has links)
No description available.
34

Resposta Vif- e Nef-específica mediada por células T CD8+ em indivíduos HIV-1-positivos que espontaneamente controlam a replicação viral / CD8-mediated Vif- and Nef-specific responses in HIV-1-infected individuals who spontaneously control viral replication

Tarosso, Leandro Fagundes da Silva 05 July 2010 (has links)
Indivíduos infectados pelo vírus da imunodeficiência humana do tipo 1 (HIV-1) que controlam a replicação viral, mesmo na ausência de tratamento com drogas antirretrovirais, representam um exemplo de contenção bemsucedida do vírus. O entendimento das respostas imunes antivirais presentes nestes indivíduos pode auxiliar no delineamento de vacinas, particularmente no caso de estratégias vacinais desenvolvidas para induzir um fenótipo de controle da replicação viral e, assim, diminuir o ritmo da progressão à AIDS e/ou a taxa de transmissão para terceiros. A resposta imune celular contra HIV-1 é geralmente mapeada em ensaios de ELISPOT-IFN-γ empregando-se peptídeos pentadecâmeros sobrepostos por 11 aminoácidos sintetizados a partir de seqüências consensuais do vírus. Contudo, este método pode subestimar a detecção da real amplitude da resposta imune celular contra epitopos contidos na seqüência autóloga do vírus infectivo. Neste trabalho, foram comparadas respostas imunes celulares contra peptídeos 15-meros baseados nas seqüências de vif e nef do consenso do subtipo B do HIV-1 e respostas imunes contra peptídeos HLA-restritos de nove ou 10 aminoácidos baseados tanto nas seqüências de vif e nef do consenso do subtipo B do HIV-1, quanto nas seqüências autólogas dos vírus seqüenciados a partir de seis pacientes controladores da replicação do HIV-1. Nossa análise revelou que três dos seis pacientes investigados mostraram maior amplitude de resposta imune celular contra epitopos em Vif e Nef quando os peptídeos HLA-restritos foram empregados, tenham sido eles preditos a partir da seqüência consensual ou a partir das seqüências do vírus autólogo. O número de respostas positivas aumentou de quatro para 16 em Vif e de oito para 22 em Nef, com o uso dos reagentes HLA-restritos. Estes resultados sugerem que emprego de peptídeos 15-meros pode sub-representar a amplitude real da resposta imune celular envolvidas no controle da replicação do HIV-1 e que o conhecimento acerca das respostas imunes de sucesso em indivíduos controladores pode ser melhorado e ampliado com a revisão dos métodos empregados. / Human immunodeficiency virus type 1 (HIV-1)-infected individuals who spontaneously control viral replication represent an example of successful containment of the AIDS virus. Understanding the anti-viral immune responses in these individuals may help in vaccine design, particularly vaccine strategies designed to induce a controller phenotype and thus, prevent disease progression and decrease risk of transmission. Immune responses against HIV-1 are normally screened using 15-mer peptides overlapped by 11 amino acids from HIV-1 consensus sequences in ELISPOT-IFN-γ assays. However, this method may underestimate the real breadth of the cellular immune responses against the autologous sequence of the infecting virus. We compared cellular immune responses against nef and vif-encoded consensus B 15-mer peptides to responses against HLA class I-predicted minimal optimal epitopes from consensus B and autologous sequences in six patients who have controlled HIV-1 replication. Interestingly, our analysis revealed that three of our patients had broader cellular immune responses against Vif- and Nef-HLA class I-predicted minimal optimal epitopes from either autologous viruses or from the consensus B sequence, when compared to responses against the 15-mer HIV-1 consensus B peptides. The number of positive responses against epitopes in these two HIV-1 proteins increased from four to 16 for Vif and from eight to 22 for Nef. These findings suggest that immune responses assessed using 15-mers peptides may underrepresent the real breadth of the immune control of the infecting virus and the knowledge about the successful responses in controller individuals could be improved after reviewing the employed methods.
35

Resposta Vif- e Nef-específica mediada por células T CD8+ em indivíduos HIV-1-positivos que espontaneamente controlam a replicação viral / CD8-mediated Vif- and Nef-specific responses in HIV-1-infected individuals who spontaneously control viral replication

Leandro Fagundes da Silva Tarosso 05 July 2010 (has links)
Indivíduos infectados pelo vírus da imunodeficiência humana do tipo 1 (HIV-1) que controlam a replicação viral, mesmo na ausência de tratamento com drogas antirretrovirais, representam um exemplo de contenção bemsucedida do vírus. O entendimento das respostas imunes antivirais presentes nestes indivíduos pode auxiliar no delineamento de vacinas, particularmente no caso de estratégias vacinais desenvolvidas para induzir um fenótipo de controle da replicação viral e, assim, diminuir o ritmo da progressão à AIDS e/ou a taxa de transmissão para terceiros. A resposta imune celular contra HIV-1 é geralmente mapeada em ensaios de ELISPOT-IFN-γ empregando-se peptídeos pentadecâmeros sobrepostos por 11 aminoácidos sintetizados a partir de seqüências consensuais do vírus. Contudo, este método pode subestimar a detecção da real amplitude da resposta imune celular contra epitopos contidos na seqüência autóloga do vírus infectivo. Neste trabalho, foram comparadas respostas imunes celulares contra peptídeos 15-meros baseados nas seqüências de vif e nef do consenso do subtipo B do HIV-1 e respostas imunes contra peptídeos HLA-restritos de nove ou 10 aminoácidos baseados tanto nas seqüências de vif e nef do consenso do subtipo B do HIV-1, quanto nas seqüências autólogas dos vírus seqüenciados a partir de seis pacientes controladores da replicação do HIV-1. Nossa análise revelou que três dos seis pacientes investigados mostraram maior amplitude de resposta imune celular contra epitopos em Vif e Nef quando os peptídeos HLA-restritos foram empregados, tenham sido eles preditos a partir da seqüência consensual ou a partir das seqüências do vírus autólogo. O número de respostas positivas aumentou de quatro para 16 em Vif e de oito para 22 em Nef, com o uso dos reagentes HLA-restritos. Estes resultados sugerem que emprego de peptídeos 15-meros pode sub-representar a amplitude real da resposta imune celular envolvidas no controle da replicação do HIV-1 e que o conhecimento acerca das respostas imunes de sucesso em indivíduos controladores pode ser melhorado e ampliado com a revisão dos métodos empregados. / Human immunodeficiency virus type 1 (HIV-1)-infected individuals who spontaneously control viral replication represent an example of successful containment of the AIDS virus. Understanding the anti-viral immune responses in these individuals may help in vaccine design, particularly vaccine strategies designed to induce a controller phenotype and thus, prevent disease progression and decrease risk of transmission. Immune responses against HIV-1 are normally screened using 15-mer peptides overlapped by 11 amino acids from HIV-1 consensus sequences in ELISPOT-IFN-γ assays. However, this method may underestimate the real breadth of the cellular immune responses against the autologous sequence of the infecting virus. We compared cellular immune responses against nef and vif-encoded consensus B 15-mer peptides to responses against HLA class I-predicted minimal optimal epitopes from consensus B and autologous sequences in six patients who have controlled HIV-1 replication. Interestingly, our analysis revealed that three of our patients had broader cellular immune responses against Vif- and Nef-HLA class I-predicted minimal optimal epitopes from either autologous viruses or from the consensus B sequence, when compared to responses against the 15-mer HIV-1 consensus B peptides. The number of positive responses against epitopes in these two HIV-1 proteins increased from four to 16 for Vif and from eight to 22 for Nef. These findings suggest that immune responses assessed using 15-mers peptides may underrepresent the real breadth of the immune control of the infecting virus and the knowledge about the successful responses in controller individuals could be improved after reviewing the employed methods.
36

HIV-1 Gene Expression: Transcriptional Regulation and RNA Interference Studies: a Dissertation

Chiu, Ya-Lin 10 January 2003 (has links)
Gene expression of human immunodeficiency virus type-1 (HIV-1), which causes Acquired Immunodeficiency Syndrome (AIDS), is regulated at the transcriptional level, where negative factors can block elongation that is overcome by HIV Tat protein and P-TEFb. P-TEFb, a positive elongation transcription factor with two subunits, CDK9 and Cyclin T1 (CycT1), catalyzes Tat-dependent phosphorylation of Ser-5 in the Pol II C-terminal domain (CTD), allowing production of longer mRNAs. Ser-5 phosphorylation enables the CTD to recruit mammalian mRNA capping enzyme (Mce1) and stimulate its guanylyltransferase activity. This dissertation demonstrates that stable binding of Mce1 and cap methyltransferase to template-engaged Pol II depends on CTD phosphorylation, but not on nascent RNA. Capping and methylation doesn't occur until nascent pre-mRNA become 19-22 nucleotides long. A second and novel pathway for recruiting and activating Mce1 involved direct physical interaction between the CTD, Tat and Mce1. Tat stimulated the guanylyltransferase and triphosphatase activities of Mce1, thereby enhancing the otherwise low efficiency of cotranscriptional capping of HIV mRNA. These findings imply that multiple mechanisms exist for coupling transcription elongation and mRNA processing at a checkpoint critical to HIV gene expression. To elucidate P-TEFb's function in human (HeLa) cells, RNA interference (RNAi) was used to degrade mRNA for hCycT1 or CDK9. Down-regulation of P-TEFb expression by RNAi can be achieved without causing major toxic or lethal effects and can control Tat transactivation and HIV replication in host cells. High-density oligonucleotide arrays were used to determine the effect of P-TEFb knockdown on global gene expression. Of 44,928 human genes analyzed, 25 were down-regulated and known or likely to be involved in cell proliferation and differentiation. These results provide new insight into P-TEFb function, its potent role in early embryonic development and strong evidence that P-TEFb is a new target for developing AIDS and cancer therapies. To fulfill the promise of RNAi for treating infectious and human genetic diseases, structural and functional mechanisms underlying RNAi in human cells were studied. The status of the 5' hydroxyl terminus of the antisense strand of short interfering RNA (siRNA) duplexes determined RNAi activity, while a 3' terminus block was tolerated in vivo. A perfect A-form helix in siRNA was not required for RNAi, but was required for antisense-target RNA duplexes. Strikingly, crosslinking siRNA duplexes with psoralen did not completely block RNAi, indicating that complete unwinding of the siRNA helix is not necessary for RNAi in vivo. These results suggest that RNA amplification by RNA-dependent RNA polymerase is not essential for RNAi in human cells.
37

Identification and Characterization of SNAPIN as a Novel Antagonist of HIV-1 Egress: A Dissertation

Younan, Patrick 05 April 2010 (has links)
Vpu has been shown to possess two distinct roles in the pathogenesis of HIV. First, Vpu has been shown to down-regulate the expression of CD4 molecules at the plasma membrane of infected cells by targeting CD4 molecules for degradation in the endoplasmic reticulum. Second, Vpu promotes viral egress in specific cell lines termed non-permissive cells by mechanism that remain relatively unclear. Therefore, experiments were conducted in order to identify cellular factors involved in the Vpu-dependent phenotype. Using full-length Vpu as bait in yeast two-hybrid experiments, several candidate cellular factors were identified. One protein, SNAPIN, was identified as a cellular factor putatively involved in the Vpu-dependent phenotype. Further experiments determined that not only do SNAPIN and Vpu interact, but that Vpu also leads to the degradation of SNAPIN by both proteasomal and lysosomal degradation pathways. Over-expression of SNAPIN in cell lines that do not normally require Vpu expression for viral production resulted in a Vpu-dependent phenotype. While over-expression of SNAPIN in otherwise permissive cell lines significantly reduced Vpu-deficient virus production, wild type levels remained relatively constant. Importantly, no defective viral structural protein production was observed; however, intracellular p24/p55 did not accumulate suggesting that in SNAPIN expressing cells, Gag is also targeted for degradation. In addition, the reduction of SNAPIN expression in non-permissive cell lines significantly increased viral titers in supernatants. Of particular interest, even in cells expressing Bst-2 (a previously identified cellular factor involved in the Vpu-phenotype), siRNA mediated knockdown of SNAPIN led to increased viral titers. In addition, the co-transfection of siRNAs targeting both SNAPIN and Bst-2 resulted in an additive effect, in which Vpu-deficient viral titers were nearly equivalent to wild-type titers. Surprisingly, siRNA-mediated knockdown of SNAPIN in Jurkat cells was sufficient to overcome any restriction in viral egress imposed by the deletion of Vpu. Conversely, siRNA targeting Bst-2 had little or no effect on viral titers in Jurkat cells regardless of whether it was transfected alone or in combination with siRNAs targeting SNAPIN. These experiments provide evidence of an alternate cellular restriction mechanism involved in viral egress that is countered by the HIV-1 accessory protein, Vpu. In addition, this research may provide further insight into the complex cellular networks involved in the trafficking of Gag through cellular endosomal pathways.
38

Antibody Responses Elicited by DNA Prime-Protein Boost HIV Vaccines: A Dissertation

Vaine, Michael 08 April 2010 (has links)
The best known correlate of protection provided by vaccines is the presence of pathogen specific antibodies after immunization. However, against the Human Immunodeficiency Virus-1 (HIV-1) the mere presence of antibodies specific for the viral Envelope (Env) protein is not sufficient to provide protection. This necessitates in depth study of the humoral responses elicited during infection and by vaccination. While a significant amount of effort has been invested in studying the evolution of antibody responses to viral infection, only limited progress in understanding antibody responses elicited through vaccination has been made. In the studies described here, I attempt to rectify this deficiency by investigating how the quality of a humoral response is altered with the use of different immunization regimens, in particular a DNA prime-protein boost regimen, or with the use of different model HIV-1 Env gp120 immunogens. In a New Zealand White (NZW) rabbit model, we demonstrate that the broader neutralizing activity elicited with the DNA prime-protein boost regimen may be the result of the elicitation of a higher avidity antibody response and a unique profile of antibody specificities. Specifically, use of a DNA prime-protein boost regimen elicits antibodies targeted to the CD4 binding domain of the HIV-1 Env, a specificity that was not frequently observed when only protein based immunizations were administered. We extended this analysis to sera from healthy human volunteers who participated in early phase HIV vaccine trials utilizing either a protein alone immunization regimen, a canarypox prime-protein boost immunization regimen, or a DNA prime-protein boost immunization regimen. Evaluation of sera from these trials demonstrated that the use of a DNA prime-protein boost regimen results in an antibody response with greater neutralization breadth characterized by an increased frequency and titer of antibodies targeted toward the CD4 binding site (CD4bs). In addition to this, the antibody response elicited by the DNA prime-protein boost regimen also exhibited the capability to mediate antibody dependent cell-mediated cytotoxicity (ADCC) activity as well as activation of the complement system. Additionally, in an attempt to better understand the capabilities of antibodies elicited by a DNA prime-protein boost regimen, we generated gp120 specific monoclonal antibodies (mAbs) from a single DNA primed-protein boosted NZW rabbit. Analysis of mAbs produced from this animal revealed that use of this immunization regimen elicits an antibody repertoire with diverse epitope specificity and cross reactivity. Furthermore, these select mAbs are capable of neutralizing heterologous HIV isolates. Further application of mAb generation in rabbits may provide a valuable tool to study immunogenicity of different vaccines and immunization regimens. Concurrently, while demonstrating that a DNA prime-protein boost regimen elicits a higher quality antibody response than that observed with other leading techniques, we also demonstrated that immunogen selection can play a vital role in the quality of the resulting antibody response. By immunizing with two closely related but phenotypically distinct model gp120 immunogens, known as B33 and LN40, we demonstrated that disparate gp120s have different intrinsic abilities to raise a heterologous neutralizing antibody response. Additionally, we showed that residues found within and flanking the b12 and CD4 binding sites play critical roles in modulating neutralizing activity of sera from animals immunized with LN40 gp120, indicating that the broader neutralizing activity seen with this immunogen may be due to differential elicitation of antibodies to this domain.
39

A Novel Motif in HIV-1 Nef that Regulates MIP-1β Chemokine Release in Macrophages: A Dissertation

Dai, Lue 17 June 2010 (has links)
Nef is an accessory protein encoded by human and simian immunodeficiency viruses (HIV and SIV), and is critical for viral pathogenicity in vivo.The structure of Nef has been resolved and the major cellular activities of Nef are generally described as down-regulation of cell surface molecules, enhancement of virus infectivity and regulation of cell signaling and activation. Macrophages represent a key target of HIV-1 infection and may contribute significantly to viral pathogenesis by facilitating viral propagation, maintaining a viral reservoir and regulating viral replication. During HIV-1 infection, various cytokines and chemokines are induced for viral advantages more than for host defense. We have previously demonstrated that HIV-1 Nef regulates the release of chemokines, MIP-1α and MIP-1ß, from infected macrophages and have proposed that this may enhance conditions for viral replication by promoting recruitment of substrate lymphocytes to sites of infection (1). However, the molecular basis for this Nef activity remains to be defined. The main goals of this thesis are to identify the functional motif in Nef that is responsible for chemokine induction in macrophages and to elucidate the relevance of this motif to other Nef functions. Using a mutagenesis approach, we have eventually identified a novel motif (KEK) that regulates chemokine production in infected macrophages after we excluded several previously described Nef motifs. This motif is conserved in both HIV-1 and SIV Nef proteins. Mutations in this domain abrogated MIP-1ß induction as well as the Nef-dependent release of other secretory factors by macrophages. However, disruption of this motif did not affect other Nef-ascribed activities such as CD4 and MHC-I down-regulation. In addition, we have determined the involvement of viral Env proteins in Nef-induced chemokine production. Distinct signaling pathways that regulate chemokine release in macrophage will also be described. Finally, several possible roles of the KEK motif are proposed and some preliminary results of co-immunoprecipitation experiments will be presented which aim to characterize cellular proteins involved in chemokine regulation by Nef. Collectively, our studies reveal a specific determinant within Nef that is critical for chemokine release by Nef. Identification of this motif paves the way for future studies to explore the molecular machanisms of Nef-regulated cell signaling pathways. Such knowledge may point to new therapeutic strategies that interrupt Nef function and limit the course of HIV-1 infection.
40

The Role of Adaptor Protein Complex-3 Delta-Mediated HIV-1 Gag Trafficking in HIV-1 Replication: A Dissertation

Kim, Adonia Lee 18 May 2012 (has links)
The process of HIV-1 particle production is a multi-step process directed by the viral structural protein Gag. As Gag is the only viral protein required to form virus-like particles, it presents a viable target for anti-viral therapeutics of which there are currently none. Although the functions of Gag during the particle assembly process have been well characterized, one of the least known parts of the assembly process is how Gag is targeted to the site of virus assembly. Two main virus assembly sites have been identified in cells that support HIV-1 replication: the plasma membrane or multivesicular bodies (MVBs). However the mechanism by which Gag is targeted to either of these sites remains unknown. The δ subunit of Adaptor Protein Complex 3 has previously been identified as a cellular co-factor for HIV-1 Gag and was reported to mediate Gag trafficking to MVBs, providing a mechanism for Gag targeting to this assembly site. Additionally, AP-3δ was reported to be required for HIV-1 production, suggesting that Gag to MVB targeting is also required for HIV-1 production. The work presented in this thesis further investigates the role of AP-3δ in Gag trafficking to MVBs and its role in HIV-1 production in previously unexplored host environments. Through the use of RNA interference-mediated depletion of AP-3δ, we determined that AP-3δ is dispensible for virus replication in infected HeLa cells, chronically infected HeLa-LAV cells and infected primary human monocyte-derived macrophages. We concomitantly disrupted AP-3 function by disrupting its association with membranes and observed no effect on virus production. Collectively, these results demonstrate that AP-3δ is not required for HIV-1 replication. However, AP-3δ was demonstrated to be required for Gag targeting to MVBs thus presenting a new model for the function of AP-3δ in the context of HIV-1 replication.

Page generated in 0.1028 seconds