• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 42
  • 42
  • 27
  • 26
  • 25
  • 18
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterization of FH3-derived and MC29-derived Gag-Myc fusion proteins : correlation of transcriptional repression and protein stability with cellular transformation /

Law, Wendy. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 106-143).
22

Sheep retroviral envelope glycoproteins : mechanisms of oncogenesis and incorporation into HIV-1 lentiviral vectors /

Liu, Shan-Lu. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 124-147).
23

Regulation of gene and protein expression : two model systems /

Lund, Lars H., January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 6 uppsatser.
24

Modification of adenovirus capsid proteins for gene therapy applications

Tang, Yizhe. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed on July 15, 2010). Includes bibliographical references.
25

Temperature-inducible and calcium-regulated proteins encoded by the virulence plasmid of Yersinia

Bölin, Ingrid January 1987 (has links)
The pathogenic members of the genus Yersinia, Y. pseudotuberculosis, Y. pestis and Y. enterocolitica are transmitted from animals to man and may give rise to disease with a variety of symptoms. These bacteria possess related plasmids necessary for virulence. In this study, gene products encoded by the virulence plasmid have been identified and characterized. A temperature-inducible outer membrane protein YOP1, is encoded by the virulence plasmid. YOP1 is expressed by Y. pseudotuberculosis and Y. enterocolitica at 37°C. The genetic locale of trie structural gene for YOPl on the virulence plasmid was determined. A mutant that was unable to express this protein, remained fully virulent, showing that YOP1 is not a virulence determinant. Several other proteins encoded by the virulence plasmid are induced at 37°C in a medium lacking Ca2+. These proteins are not expressed at 26°C and expression is repressed by Ca2+-concentrations in excess of 2.5 mM. In Ca2+-deficient medium, the induced proteins can be found extracellu- larly as well as in the outer membrane. However, in the presence of Ca at 37°C they are only found in the outer membrane. The released proteins consist of eight polypeptides as revealed by two-dimensional electro­phoresis. These proteins, Y0P2a and 2b, YOP3, Y0P4a and 4b, the V-antigen and a small uncharacterized polypeptide, are expressed by all three pathogenic Yersinia species, both in vivo and in vitro. The Ca2+-controlled expression of the YOP proteins is regulated by genes in the Ca2+ -region, which are conserved in the three species. Mutations in this region repress the expression of the Ca2+-regulated YOPs. The genetic loci identified for five of these proteins revealed that only the structural gene of the Y0P4b protein is part of the Ca2+ -region. The other genes were found at separate locations outside this region. The structural genes for YOP4b, YOP3 and the V-antigen, together with the genes for two additional polypeptides, were localized to a common region conserved on the plasmids of the Yersinia species. The structural genes for Y0P2b (yopH) and Y0P5 (yopE) are located in different positions on the plasmid from Y. enterocolitica, compared to the other two species. This plasmid has Been rearranged so that these genes are located close to one another. The DNA sequence of the yopH gene shows that it is a singly transcrip­tional unit. Transcription of this gene is regulated by Ca2+-concentra­tion and by temperature. A mutant strain of Y. pseudo tuberculosis, de­leted for the yopH gene on the virulence plasmid, is avirulent In mice. Virulence is restored by trans-complementation with the cloned yopH gene. The mutant strain is also’ unable to inhibit phagocytosis of macrophages as compared to the wild-type strain. The trans-compleroented strain shows inhibition comparable to that of the wild-type. Therefore, the YOP2b protein is considered to be an essential virulence determinant. / digitalisering@umu.se
26

Probing the Structural Topology of HIV-1 Virion Infectivity Factor (VIF): A Dissertation

Auclair, Jared R. 14 December 2007 (has links)
Human Immunodeficiency Virus Type 1 (HIV-1), the virus that causes Acquired Immunodeficiency Syndrome (AIDS), attacks the immune system leaving patients susceptible to opportunistic infections that eventually cause death. Highly Active Antiretroviral Therapy, HAART, is the current drug strategy used to combat HIV. It is a combination therapy that includes HIV-1 Reverse Transcriptase and HIV-1 Protease inhibitors. Drug resistant strains arise that evade current HAART treatments; therefore novel drugs are needed. HIV-1 regulatory proteins such as Tat, Rev, Nef, Vpr, Vpu, and Vif are attractive new drug targets. Of particular interest is the HIV-1 Vif protein and its cellular binding partner APOBEC3G. In the absence of HIV-1 Vif, APOBEC3G, a cytidine deaminase, is able to mutate the viral cDNA and render the virus noninfectious. HIV-1 Vif binds to APOBEC3G and targets it for proteosomal degradation through an interaction with a Cullin-RING ligase complex. Blocking the HIV-1 Vif APOBEC3G interaction would allow APOBEC3G to perform its antiviral function. An attractive strategy to target the HIV-1 Vif APOBEC3G interaction would be a structure-based one. To apply structure-based drug design approaches to HIV-1 Vif and APOBEC3G, I attempted to collect high resolution structural data on HIV-1 Vif and APOBEC3G. My attempts were unsuccessful because the milligram quantities of soluble protein required were not obtained. Therefore, in Chapter III I used chemical cross-linking and mass spectrometry to probe the structural topology of HIV-1 Vif obtaining low resolution structural data. Chemical cross-linking formed HIV-1 Vif multimers including dimers, trimers, and tetramers. Analysis of the cross-linked monomer revealed that HIV-1 Vif’s N-terminal domain is a well-folded, compact, globular domain, where as the C-teriminal domain is predicted to be disordered. In addition, disorder prediction programs predicted the C-terminal domain of HIV-1 Vif to be disordered. Upon oligomerization the C-terminal domain undergoes a disorder-to-order transition that not only facilitates oligomerization but may facilitate other protein-protein interactions. In addition, HIV-1 Vif oligomerization bring Lys34 and Glu134 in close proximity to each other likely creating one molecular surface forming a “hot spot” of biological activity. In Chapter IV I confirmed my low resolution structural data via peptide competition experiments where I identified peptides that can be used as scaffolds for future drug design. HIV-1 Vif oligomerization is concentration dependent. The HIV-1 Vif peptides Vif(29-43) and Vif(125-139) were able to disrupt HIV-1 Vif oligomerization, which confirms the low resolution structural data. HIV-1 Vif peptides Vif(25-39) and Vif(29-43) reduced the amount of APOBEC3G immobilized on the Protein A beads, reduced the amount of HIV-1 Vif interacting with APOBEC3G, or degraded APOBEC3G itself. These peptides could be used as scaffolds to design novel drugs that disrupt the function of HIV-1 Vif and or APOBEC3G. Therefore, low resolution structural data and peptide competition experiments were successful in identifying structurally important domains in HIV-1 Vif. They also provided insight into a possible mechanism for HIV-1 Vif function where a disorder-to-order transition facilitates HIV-1 Vif’s ability to interact with a diverse set of macromolecules. These data advance our structural understanding of HIV-1 Vif and they will facilitate future highresolution studies and novel drug designs.
27

Pathogenesis of HIV-1 nef in adult mice

Rahim, Mir Munir Ahmed, 1975- January 2008 (has links)
Development of a suitable animal model of AIDS is much needed in AIDS research to study infection and pathogenesis as well as to evaluate methods of prevention and treatment of HIV infection. Small animals such as rodents are attractive candidates for AIDS research due to the availability of various inbred and genetically engineered strains, extensive knowledge or their immune system, especially in mice, and the relative ease of breeding and maintaining animal colonies. Transgenic small animal models carrying entire HIV genome or selected genes have been instrumental to understand functions of HIV genes in vivo and their role in HIV pathogenesis. The type of cells in which HIV genes are expressed seems to be an import prerequisite for the study of HIV gene functions in transgenic mice. Mice constitutively expressing the entire HIV-1 genome or HIV-1 nef gene in CD4 + T cells and in the cells of macrophage/dendritic lineage develop an AIDS-like disease very similar to AIDS disease in humans. Similarly, expression of Nef in adult mice, using inducible system, results in the AIDS-like disease. This disease is characterized by thymic atrophy, impaired thymocyte maturation, loss of CD4+ T cells, increased activation and turnover of T cells, which can occur in the absence of lymphypenia, and non-lymphoid organ disease involving the lungs and kidneys. Susceptibility of adult mice to the pathological effects of Nef suggests that the AIDS-like disease in the constitutively expressing Nef Tg mice is not due to developmental defects caused by early expression of Nef. This model highlights the important role of Nef in HIV-1 pathogenesis. The high similarity in the disease in these Tg mice with human AIDS strongly suggest that these mice are a relevant model to study AIDS. This study further evidence that mouse cells can support functions of Nef and these Tg mice represent a unique model to study Nef functions in vivo in the context of the primary immune system. Moreover, the inducible Nef Tg model has given us the ability to control the level and time of expression of Nef which was impossible to do in the previously reported constitutive Nef Tg mouse models. These mice will be useful to study immune reconstitution since Nef expression can be turned off after withdrawal from dox.
28

Cytoplasmic Localization of HIV-1 Vif Is Necessary for Apobec3G Neutralization and Viral Replication: A Dissertation

Farrow, Melissa Ann 05 May 2005 (has links)
The binding of HIV-1 Vif to the cellular cytidine deaminase Apobec3G and subsequent prevention of Apobec3G virion incorporation have recently been identified as critical steps for the successful completion of the HIV-1 viral life cycle. This interaction occurs in the cytoplasm where Vif complexes with Apobec3G and directs its degradation via the proteasome pathway or sequesters it away from the assembling virion, thereby preventing viral packaging of Apobec3G. While many recent studies have focused on several aspects of Vif interaction with Apobec3G, the subcellular localization of Vif and Apobec3G during the viral life cycle have not been fully considered. Inhibition of Apobec3G requires direct interaction of Vif with Apobec3G, which can only be achieved when both proteins are present in the same subcellular compartment. In this thesis, a unique approach was utilized to study the impact of Vif subcellular localization on Vif function. The question of whether localization could influence function was brought about during the course of studying a severely attenuated viral isolate from a long-term non-progressor who displayed a remarkable disease course. Initial observations indicated that this highly attenuated virus contained a mutant Vif protein that inhibited growth and replication. Upon further investigation, it was found that the Vif defect was atypical in that the mutant was fully functional in in vitro assays, but that it was aberrantly localized to the nucleus in the cell. This provided the basis for the study of Vif localization and its contribution to Vif function. In addition to the unique Vif mutant that was employed, while determining the localization and replication phenotypes of the differentially localized Vif proteins, a novel pathway for Vif function was defined. Copious publications have recently defined the mechanism for Vif inhibition of Apobec3G. Vif is able to recruit Apobec3G into a complex that is targeted for degradation by the proteasome. However, this directed degradation model did not fully explain the complete neutralization of Apobec3G observed in cell culture. Other recent works have proposed the existence of a second, complementary pathway for Vif function. This pathway is defined here as formation of an aggresome that prevents Apobec3G packaging by binding and sequestering Apobec3G in a perinuclear aggregate. This second mechanism is believed to work in parallel with the already defined directed degradation pathway to promote complete exclusion of Apobec3G from the virion. The data presented here provide insight into two areas of HIV research. First, the work on the naturally occurring Vif mutant isolated from a long-term non-progress or confirms the importance of Vif in in vivo pathogenesis and points to Vif as a potentially useful gene for manipulation in vaccine or therapy design due to its critical contributions to in vivo virus replication. Additionally, the work done to address the subcellular localization of Vif led to the proposal of a second pathway for Vif function. This could have implications in the field of basic Vif research in terms of completely understanding and defining the functions of Vif. Again, a more complete knowledge about Vif can help in the development of novel therapies aimed at disrupting Vif function and abrogating HIV-1 replication.
29

Investigation of the C-Terminal Helix of HIV-1 Matrix: A Region Essential for Multiple Functions in the Viral Life Cycle: A Dissertation

Brandano, Laura A 10 July 2011 (has links)
Since the first cases were reported over thirty years ago, great strides have been made to control disease progression in people living with HIV/AIDS. However, current estimates report that there are about 34 million individuals infected with HIV worldwide. Critical in the ongoing fight against this pandemic is the continuing development of highly active anti-retroviral therapies, ideally those with novel mechanisms of action. Currently, there are no medications approved for use that exploit the HIV-1 MA protein, despite its central role in multiple stages of the virus life cycle. This thesis sought to examine whether a highly conserved glutamate residue at position 99 in the understudied C-terminal helix of MA is required for HIV-1 replication. I characterized a panel of mutant viruses that contain different amino acid substitutions at this position using viral infectivity studies, virus-cell fusion assays, and immunoblotting. In doing so, I found that substitution of this glutamate with either a valine (E99V) or lysine (E99K) residue disrupted Env incorporation into nascent HIV particles, and abrogated their ability to fuse with target-cell membranes. In determining that the strain of HIV could affect the magnitude of E99V-associated defects, I identified a compensatory substitution at MA residue 84 that rescued both E99V- and E99K-associated impairments. I further characterized the MA E99V and E99K mutations by truncating HIV Env and pseudotyping with heterologous envelope proteins in an attempt to overcome the Env incorporation defect. Unexpectedly, I found that facilitating fusion at the plasma membrane was not sufficient to reverse the severe impairments in virus infectivity. Using quantitative PCR, I determined that an early post-entry step is disrupted in these particles that contain the E99V or E99K MA substitutions. However, allowing entry of mutant virus particles into cells through an endosomal route conferred a partial rescue in infectivity. As the characterization of this post-entry defect was limited by established virological methods, I designed a novel technique to analyze post-fusion events in retroviral infection. Thus, I present preliminary data regarding the development of a novel PCR-based assay that monitors trafficking of the viral reverse transcription complex (RTC) in an infected cell. The data presented in this thesis indicate that a single residue in MA, E99, has a previously unsuspected and key role in multiple facets of HIV-1 MA function. The pleiotropic defects that arise from specific substitutions of this amino acid implicate a hydrophobic pocket in MA in Env incorporation and an early post-entry function of the protein. These findings suggest that this understudied region of MA could be an important target in the development of a novel antiretroviral therapy.
30

Characterization of the Nef-TCR Zeta Interaction and Its Role in Modulation of Src Family Kinase Activity: A Dissertation

Kim, Walter Minsub 07 August 2009 (has links)
One of the hallmarks of an infection with pathogenic HIV-1 is the elevated level of immune activation that leads to rapid progression to AIDS. Surprisingly, nonhuman primates naturally infected with SIV do not exhibit an augmented activation phenotype nor severe immunodeficiency. One of the viral components implicated in determining the state of immune activation is the accessory protein Nef which has been demonstrated to affect T cell signaling pathways from within the intracellular compartment and for Nef from SIV, to downregulate TCR surface expression. Recently, Nef from HIV-1 and SIV have been demonstrated to bind the ζ chain of the TCR which functions as the primary signaling subunit of the receptor. However, the molecular details of the Nef-TCRζ interaction as well as the role of complex formation in modulation of immune activation remain largely unknown. This thesis describes work directed at elucidating the biochemical and structural features of the Nef-TCRζ interaction and the functional consequences of complex formation relevant to T cell activation. Chapter I provides a brief introduction on HIV/SIV classification and pathogenesis with an emphasis on Nef and its pleiotropic function in T cells. Chapter II describes the biochemical characterization of the interaction of the conserved core domain of Nef proteins from HIV-1, HIV-2 and SIV with the cytoplasmic domain of TCRζ. The core domains of HIV-2 ST and SIVmac239 are demonstrated to bind the cytoplasmic domain of TCRζ at two distinct regions and with different affinities. In contrast, the core domain of HIV-1 isolate ELI Nef only binds to one region and with the weakest calculated affinity among the HIV-1, HIV-2 and SIV Nef proteins studied. In addition, both the N-terminal domain and the strong TCRζ-binding core domain of SIVmac239 Nef each are demonstrated to be necessary but not sufficient for downregulation of TCR surface expression. Chapter III describes the crystallization and structure determination methods used to solve the crystal structures of the core domain of SIVmac239 Nef in complex with two overlapping TCRζ polypeptides. Crystals of Nef in complex with the longer TCRζDP1 (L51-D93) polypeptide grew in a tetragonal space group but only diffracted to low resolution. In contrast, crystals of the Nefcore-TCRζA63-R80 complex grew in an orthorhombic space group and diffracted to high resolution but were nearly perfectly pseudo-merohedrally twinned thus complicating structure determination. Following identification of the twin law relating the twin domains, the structure of the Nefcore-TCRζA63-R80 complex was determined using refinement procedures that accounted for crystal twinning to 2.05 Å. The structure of the Nefcore-TCRζDP1 complex was solved to 3.7 Å from a single non-twinned crystal. The altered crystal packing induced by the shorter TCRζA63-R80polypeptide is postulated to have led to a reduction in crystal symmetry and increase in proneness to crystal twinning. Chapter IV provides a detailed analysis of the structure of the Nefcore-TCRζA63-R80 complex and demonstrates its effect on modulation of Src family kinase activity. The TCRζ polypeptide adopts an alpha helical conformation and occupies a hydrophobic crevice on Nef not shared by any of Nef’s reported interaction partners. The interaction of Nefcore with TCRζ is mediated primarily by the burial of hydrophobic residues on TCRζ (L75, L77) in a hydrophobic pocket on Nef and a salt bridge between a glutamic acid (E74) on TCRζ and a basic patch on Nef consisting of two conserved arginines (R105, R106). The TCRζ polypeptide additionally orders the N-terminus of Nefcore into a polyproline type II helix that has been described to bind the SH3 domain of Src family kinases. We demonstrate that in vitro phosphorylation of TCRζcyt by Fyn and Src is specifically augmented by HIV-1 and SIV Nefcoreand suggest that Nef-TCRζ complex formation cooperatively enhances kinase activity. Chapter V contains overall conclusions, future directions and a model illustrating the proposed role of the Nef-TCRζ interaction in immune activation modulation. The Appendices contain sequences of the proteins, gene constructs and primers used in this work.

Page generated in 0.3458 seconds