• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 234
  • 89
  • 44
  • 22
  • 20
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 559
  • 559
  • 132
  • 95
  • 91
  • 88
  • 85
  • 75
  • 69
  • 59
  • 53
  • 50
  • 47
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Sequence Determinants of In Vivo and Intrinsic Nucleosome Occupancy

Tillo, Desiree C. 31 August 2011 (has links)
The genomes of all eukaryotic organisms are packaged into chromatin, the fundamental unit of which is the nucleosome. Since the proposal of the nucleosome as the primary repeating unit of chromatin structure in 1974, it has become clear that the biological roles of nucleosomes extend far beyond simple DNA packaging and include virtually all processes involving the genome. Despite the integral roles of nucleosomes in many fundamental biological processes, the relative contributions of the cellular cues and sequence features that directly govern their arrangement on genomic DNA remain unclear. In this Thesis, I characterise the sequence preferences of nucleosomes using data sets derived from genome-wide studies. I describe the analysis of data derived from the first genome-wide map of in vivo nucleosome occupancy across a eukaryotic genome (in this case, the budding yeast, Saccharomyces cerevisiae). Using these data, I construct a sequence-based linear model of nucleosome occupancy that takes into account structural features of DNA (which correlate with simple base composition) as well as transcription factor (TF) binding site information, which has significant ability to predict nucleosome occupancy in vivo. I go on to test particular aspects of this model and show that genetic perturbation of TFs that the in vivo model deems important (Abf1, Reb1, and Rsc3) have the expected effects, an increase in nucleosome occupancy over their cognate binding sites as well as a reduction in transcription from the corresponding genes, suggesting that these factors are required for promoter function and definition. I also confirm that in vitro nucleosome occupancy correlates highly with sequence features important for nucleosome occupancy in vivo and go on to develop a simple model for nucleosome occupancy based solely on histone-DNA interactions. This model suggests that base composition (G+C content) is a dominant feature in determining intrinsic nucleosome occupancy. Finally, I apply a model of intrinsic nucleosome occupancy to the human genome and show that there is a fundamental difference in intrinsic nucleosome occupancy at regulatory regions across species. This finding illustrates a potential functional consequence of variation in base composition in eukaryotic genomes.
202

Sequence Determinants of In Vivo and Intrinsic Nucleosome Occupancy

Tillo, Desiree C. 31 August 2011 (has links)
The genomes of all eukaryotic organisms are packaged into chromatin, the fundamental unit of which is the nucleosome. Since the proposal of the nucleosome as the primary repeating unit of chromatin structure in 1974, it has become clear that the biological roles of nucleosomes extend far beyond simple DNA packaging and include virtually all processes involving the genome. Despite the integral roles of nucleosomes in many fundamental biological processes, the relative contributions of the cellular cues and sequence features that directly govern their arrangement on genomic DNA remain unclear. In this Thesis, I characterise the sequence preferences of nucleosomes using data sets derived from genome-wide studies. I describe the analysis of data derived from the first genome-wide map of in vivo nucleosome occupancy across a eukaryotic genome (in this case, the budding yeast, Saccharomyces cerevisiae). Using these data, I construct a sequence-based linear model of nucleosome occupancy that takes into account structural features of DNA (which correlate with simple base composition) as well as transcription factor (TF) binding site information, which has significant ability to predict nucleosome occupancy in vivo. I go on to test particular aspects of this model and show that genetic perturbation of TFs that the in vivo model deems important (Abf1, Reb1, and Rsc3) have the expected effects, an increase in nucleosome occupancy over their cognate binding sites as well as a reduction in transcription from the corresponding genes, suggesting that these factors are required for promoter function and definition. I also confirm that in vitro nucleosome occupancy correlates highly with sequence features important for nucleosome occupancy in vivo and go on to develop a simple model for nucleosome occupancy based solely on histone-DNA interactions. This model suggests that base composition (G+C content) is a dominant feature in determining intrinsic nucleosome occupancy. Finally, I apply a model of intrinsic nucleosome occupancy to the human genome and show that there is a fundamental difference in intrinsic nucleosome occupancy at regulatory regions across species. This finding illustrates a potential functional consequence of variation in base composition in eukaryotic genomes.
203

Functional Analysis of the Cis-Regulatory Elements I56i, I56ii and I12b that Control Dlx Gene Expression in the Developing Forebrain of Mouse and Zebrafish

Yu, Man 22 August 2011 (has links)
The vertebrate Dlx gene family consists of multiple convergently transcribed bigene clusters and encodes a group of homeodomain-containing transcription factors crucial for the development of forebrain, branchial arches, sensory organs and limbs. At least four cis-regulatory elements (CREs) are responsible for Dlx expression in the forebrain: URE2 and I12b in the Dlx1/Dlx2 (zebrafish dlx1a/dlx2a) locus, and, I56i and I56ii in the Dlx5/Dlx6 (zebrafish dlx5a/dlx6a) locus. Here, we first show that unlike the other three enhancers, mouse I56ii CRE targets a group of GABAergic projection neurons expressing striatal markers Meis2 and Islet1. Meis2 and Islet1 proteins can activate reporter gene transcription via the I56ii CRE, suggesting that they may be potential upstream regulators of Dlx genes in vivo. To determine whether there exists a dlx-mediated regulatory pathway during zebrafish GABAergic neuron formation, we establish two independent lines of transgenic fish in which the GFP reporter gene is controlled by a 1.4kb dlx5a/dlx6a intergenic sequence (encompassing zebrafish I56i and I56ii) and a 1.1kb fragment containing only I56i CRE, respectively. Our observations reveal that dlx5a/dlx6a regulatory elements exhibit a fairly specific activity in the zebrafish forebrain and may be essential for GABAergic neuron generation, while I56i and I56ii are likely to play distinct roles in modulating this process in different subpopulations of cells. Disruption of dlx1a/dlx2a or dlx5a/dlx6a function leads to a marked decrease of enhancer activity in the diencephalon and midbrain as well as a comparatively lesser extent of reduction in the telencephalon. In order to define the specific contribution of various individual CREs to overall Dlx regulation, we also generate a mutant mouse model in which I12b CRE is selectively deleted. Despite that mice homozygous for I12b loss develop normally and harbor no overt morphological defects in the forebrain, targeted deletion of this enhancer results in a significant reduction of Dlx1/Dlx2 transcript levels and seemingly perturbs cell proliferation in the subpallial telencephalon, particularly in the ventricular and subventricular zones of ganglionic eminences. Taken together, these data illustrate a complex and dynamic Dlx regulation in the early developing forebrain through the implications of multiple Dlx CREs with overlapping and diverse functions.
204

lac of Time : Transcription Factor Kinetics in Living Cells

Hammar, Petter January 2013 (has links)
Gene regulation mediated by transcription factors (TFs) is essential for all organisms. The functionality of TFs can largely be described by the fraction of time they occupy their regulatory binding sites on the chromosome. DNA-binding proteins have been shown to find their targets through facilitated diffusion in vitro. In its simplest form this means that the protein combines a random 3D search in the cytoplasm with 1D sliding along DNA. This has been proposed to speed up target location. It is difficult to mimic the in vivo conditions for gene regulation in biochemistry experiments; i.e. the ionic strength, chromosomal structure, and the presence of other DNA-binding macromolecules.    In this thesis single molecule imaging assays for live cell measurements were developed to study the kinetics of the Escherichia coli transcription factor LacI. The low copy number LacI, in fusion with a fluorescent protein (Venus) is detected as a localized near-diffraction limited spot when being DNA-bound for longer than the exposure time. An allosteric inducer is used to control binding and release. Using this method we can measure the time it takes for LacI to bind to different operator sequences. We then extend the assay and show that LacI slides in to and out from the operator site, and that it is obstructed by another DNA-binding protein positioned next to its target. We present a new model where LacI redundantly passes over the operator many times before binding.    By combining experiments with molecular dynamics simulations we can characterize the details of non-specific DNA-binding. In particular, we validate long-standing assumptions that the non-specific association is diffusion-controlled. In addition it is seen that the non-specifically bound protein diffuses along DNA in a helical path.    Using microfluidics we design a chase assay to measure in vivo dissociation rates for the LacI-Venus dimer. Based on the comparison of these rates with association rates and equilibrium binding data we suggest that there might be a short time following TF dissociation when transcription initiation is silenced. This implies that the fraction of time the operator is occupied is not enough to describe the regulatory range of the promoter.
205

MicroRNA Target Prediction via Duplex Formation Features and Direct Binding Evidence

Lekprasert, Parawee January 2012 (has links)
<p>MicroRNAs (miRNAs) are small RNAs that have important roles in post-transcriptional gene regulation in a wide range of species. This regulation is controlled by having miRNAs directly bind to a target messenger RNA (mRNA), causing it to be destabilized and degraded, or translationally repressed. Identifying miRNA targets has been a large area of focus for study; however, a lack of generally high-throughput experiments to validate direct miRNA targeting has been a limiting factor. To overcome these limitations, computational methods have become crucial for understanding and predicting miRNA-gene target interactions.</p><p>While a variety of computational tools exist for predicting miRNA targets, many of them are focused on a similar feature set for their prediction. These commonly used features are complementarity to 5'seed of miRNAs and evolutionary conservation. Unfortunately, not all miRNA target sites are conserved or adhere to canonical seed complementarity. Seeking to address these limitations, several studies have included energy features of mRNA:miRNA duplex formation as alternative features. However, different independent evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and conservation requirement.</p><p>We detect significant differences of energy features at experimentally supported human miRNA target sites and at genome-wide interaction sites to Argonaute (AGO) protein family members, which are essential parts of the miRNA machinery complex. This trend is confirmed on data sets that assay the effect of miRNAs on mRNA and protein expression changes, where a statistically significant change in expression is noted when compared to the control. Furthermore, our method also allows for prediction of strictly imperfect sites, as well as non-conserved targets.</p><p>Recently, new methods for identifying direct miRNA binding have been developed, which provides us with additional sources of information for miRNA target prediction. While some computational target predictions tools have begun to incorporate this information, they still rely on the presence of a seed match in the AGO-bound windows without accounting for the possibility of variations. </p><p>We investigate the usefulness of the site level direct binding evidence in miRNA target identification and propose a model that incorporates multiple different features along with the AGO-interaction data. Our method outperforms both an ad hoc strategy of seed match searches as well as an existing target prediction tool, while still allowing for predictions of sites other than a long perfect seed match. Additionally, we show supporting evidence for a class of non-canonical sites as bound targets. Our model can be extended to predict additional types of imperfect sites, and can also be readily modified to include additional features that may produce additional improvements.</p> / Dissertation
206

Regulation of Human Papillomavirus Type 16 mRNA Splicing and Polyadenylation

Zhao, Xiaomin January 2005 (has links)
Human papillomavirus type 16 (HPV-16) is the major causative agent of cervical cancer. The life cycle of this oncogenic DNA tumour virus is strictly associated with the differentiation program of the infected epithelial cells. Expression of the viral capsid genes L1 and L2 can only be detected in the terminally differentiated epithelial cells. The studies here focus on the regulation of HPV-16 late gene expression, which is under tight regulation. Our experimental system consisted of almost the full length HPV-16 genome driven by a strong CMV promoter. This plasmid and mutants thereof could be transfected into HeLa cells and RNA levels monitored. Using this system, we identified an hnRNP A1-dependent splicing silencer between positions 178 and 226 of the L1 gene. This silencer inhibited the use of the 3' splice site, located immediately upstream of the L1 AUG. We speculate that this splicing silencer plays an essential role in preventing late gene expression at an early stage of the viral life cycle. We subsequently identified a splicing enhancer located in the first 17 nucleotides of L1 that may be needed to counteract the multiple hnRNP A1 dependent splicing silencers in the L1 coding region. A 55kDa protein specifically bound to this splicing enhancer. We also demonstrated that binding of the cellular factors to the splicing silencer in the L1 coding region had an inhibitory effect on expression from L1 cDNA expression plasmids. The HPV-16 genome is divided into the early region and the late region, separated by the early poly(A) signal (pAE). pAE is used preferentially early in infection, thereby efficiently blocking late gene expression. We demonstrated that a 57 nucleotide U-rich region of the early 3’untranslated region (3’eUTR) acted as an enhancing upstream element on the usage of pAE. We demonstrated that this U-rich region specifically interacts with hFip1, CstF-64, hnRNP C1/C2 and PTB, suggesting that these factors were either enhancing or regulating polyadenylation at the HPV-16 pAE. In conclusion, two regulatory RNA elements that both act to prevent late gene expression at an early stage in the viral life cycle and in proliferating cells were identified: a splicing silencer in the late region and an upstream u-rich element at the pAE.
207

Investigating the role and activity of CC-Type glutaredoxins in the redox regulation of TGA1/TGA4 in <i>Arabidopsis thaliana</i>

Hahn, Kristen Rae 07 July 2009 (has links)
Plants respond to and defend themselves against a wide range of disease-causing microbes. In order to do so, massive reprogramming of cellular protein expression patterns, which underpin various defense pathways, must occur. A family of basic leucine zipper transcription factors, called TGA factors, has been implicated in mediating this response. The TGA factors themselves are subject to complex regulation; of note, TGA1 and TGA4 are regulated via a reduction of conserved cysteines after treatment with the phenolic signaling molecular salicylic acid, which accumulates following pathogen challenge. Previous studies indicate that TGA factors physically interact in the yeast two-hybrid system with the plant-specific CC-type of glutaredoxin (Grx)-like proteins. Grx are a family of oxidoreductases that are important for maintaining the cellular redox status and often are required to modulate protein activity. The goal of this study was to ascertain the role of these Grx-like proteins in regulating TGA1 redox state. To this end, the expression patterns of several Grx genes were analyzed.<p> Quantitative-reverse-transcriptase PCR (q-RT-PCR) experiments indicated that TGA1 and TGA4 may be involved in down-regulating levels Grx-like gene transcripts after exposure to pathogens or salicylic acid (SA). Furthermore, qRT-PCR experiments also indicated that expression of some Grx-like genes is induced by SA, jasmonic acid (JA), and <i>Pseudomonas syringae</i>. Overexpression of the Grx-like protein, CXXC9, in <i>Arabidopsis thaliana</i> revealed that it is a regulatory factor in the cross-talk between vi theSA/JA pathways as it is able to suppress expression of PDF1.2, a marker for the JA defense pathway, as determined by qRT-PCR. The â-hydroxy ethyl disulfide (HED) assay was utilized to determine if the CC-type of Grx-like proteins have oxidoreductase activity <i>in vitro</i>. These studies revealed that that the Grx-like proteins do not exhibit oxidoreductase activity in this assay.
208

Evolution of Floral Color Patterning in Chilean <em>Mimulus</Em>

Cooley, Arielle Marie 05 December 2008 (has links)
<p>Evolution can be studied at many levels, from phenotypic to molecular, and from a variety of disciplines. An integrative approach can help provide a more complete understanding of the complexities of evolutionary change. This dissertation examines the ecology, genetics, and molecular mechanisms of the evolution of floral anthocyanin pigmentation in four species of <em>Mimulus</em> native to central Chile. Anthocyanins, which create red and purple colors in many plants, are a valuable model for studying evolutionary processes. They are ecologically important and highly variable both within and between species, and the underlying biosynthetic pathway is well characterized. The focus of this dissertation is dramatic diversification in anthocyanin coloration, in four taxa that are closely related to the genomic model system <em>M. guttatus</em>. I posed three primary questions: (1) Is floral diversification associated with pollinator divergence? (2) What is the genetic basis of the floral diversification? (3) What is the molecular mechanism of the increased production of anthocyanin pigment? The first question was addressed by evaluating patterns of pollinator visitation in natural populations of all four study taxa. The second question was explored using segregation analysis for a series of inter- and intraspecific crosses. One trait, increased petal anthocyanins in <em>M. cupreus</em>, was further dissected at the molecular level, using candidate gene testing and quantitative gene expression analysis. Pollinator studies showed little effect of flower color on pollinator behavior, implying that pollinator preference probably did not drive pigment evolution in this group. However, segregation analyses revealed that petal anthocyanin pigmentation has evolved three times independently in the study taxa, suggesting an adaptive origin. In addition to pollinator attraction, anthocyanins and their biochemical precursors protect against a variety of environmental stressors, and selection may have acted on these additional functions. Molecular analysis of petal anthocyanins in <em>M. cupreus</em> revealed that this single-locus trait maps to a transcription factor, <em>McAn1</em>, which is differentially expressed in high- versus low-pigmented flowers. Expression of the anthocyanin structural genes is tightly correlated with <em>McAn1</em> expression. The results suggest that <em>M. cupreus</em> pigmentation evolved by a mutation cis to <em>McAn1</em> that alters the intensity of anthocyanin biosynthesis.</p> / Dissertation
209

Studies into Location-specific cis-Regulatory Motifs

Yokoyama, Ken Daigoro January 2010 (has links)
<p>Gene expression and regulation are major determinants of phenotypic traits displayed across species. Although the DNA sequence elements that control gene expression play a crucial role in determining species morphology, predicting cis-regulatory elements through sequence analysis alone remains a difficult task. A few regulatory elements, such as the TATA-box and Initiator sequence, have been known to exhibit overrepresentation at specific locations within the proximal promoter. However, the extent to which this occurs among cis-regulatory elements is not well understood. Here, we take a genome-wide approach towards detecting such functional sequence elements, using location-specific overrepresentation as a criterion for regulatory function. We provide evidence that a surprisingly large number of regulatory elements exhibit locational overrepresentation with respect to the transcription start site. We then utilize this characteristic to predict novel cis-regulatory elements overrepresented at particular locations within the proximal promoter.</p><p>Transcriptional regulation is most often controlled not by single protein factors acting in isolation, but instead multiple transcription factors acting together within multi-protein complexes. As protein-protein interactions are largely determined through protein structure, we would expect to see patterns of spatial preference between motif-pairs binding interacting factors. However, in the absence of methods to predict such spatial preferences between motifs, comprehensive assessments of such inter-relationships have not been previously conducted. As our model provides a general tool for detecting positional specificities of a motif relative to a given reference point, we expanded our model to measure distance preferences between pairs of motifs on a genome-wide scale. We show that there often exist patterns of spatial dependencies between pairs of sequence elements that bind interacting protein factors. We find that regulatory motifs binding interacting proteins often have multiple inter-motif distances at which they preferentially occur, and we show that the intervals between preferred distances are highly consistent across motif-pairs. This distance preference `phasing' was empirically found to occur at consistent intervals around ~8-10 bp, corresponding to approximately the number of nucleotides within a single turn of the DNA double-helix. This finding suggests a tendency for protein factor-pairs to interact in a specific orientation with respect to the turn of the DNA molecule, and offers a convenient method by which to determine motif-pairs binding interacting transcription factors de novo. </p><p>While little is known about the mechanisms by which individual cis-regulatory elements ultimately control gene expression, even less is known about how such elements evolve over time. A single transcription factor can potentially target hundreds of genes across the genome, and thus modifications in the binding affinities of such proteins must induce conversions at a multitude of functional sites in order to preserve the set of target genes that the trans-factor regulates. It is therefore commonly assumed that such changes occur rarely and at a slow rate over the course of evolution. Despite this widespread assumption, we find that a surprisingly large number of cis-regulatory elements have been subject to significant changes in consensus sequence in a lineage-specific manner. Here, we demonstrate that the genomic landscape is highly adaptable, rapidly adjusting to global changes in preferred regulatory consensus sequences. Focusing upon regulatory elements exhibiting location-specific overrepresentation, we find that a substantial fraction of regulatory elements have been subject to evolutionary modifications, even between closely related eutherians. These findings have broad implications regarding evolving phenotypes observed across species.</p> / Dissertation
210

Transcriptional Analysis Of The Principal Cell Division Gene ftsZ Of Mycobacterium Tuberculosis And Mycobacterium Smegmatis

Roy, Sougata 06 1900 (has links)
The success of Mycobacterium tuberculosis as a pathogen is due to its remarkable ability to: (i). adapt to and survive inside activated macrophages under nonproliferating condition, (ii). put up drug resistance and (iii). enter into hypoxia-induced dormancy and remain in nonproliferating condition, be resistant to drugs, and get reactivated into proliferation when favourable conditions arise. Thus, regulation of cell division (arrest and resumption) is an obligatory event that is critical to the pathogen for the establishment of successful infection, latency and reactivation process in human host. Therefore, in order to understand and combat the successful survival strategy of the bacterium inside the host macrophages or in granuloma, a basic knowledge of the regulation of cell division in tubercle bacillus is essential. Bacterial cytokinetic protein FtsZ (a tubulin homologue) is the key regulatory molecule for cell division and its intracellular level is critical for initiation of cell division in bacteria. Therefore, in order to understand the regulation cell division by expression and maintenance of ftsZ mRNA and protein, we initiated studies on the transcriptional regulation of ftsZ gene in the slow growing pathogen, M. tuberculosis, and in the fast-growing saprophyte M. smegmatis. Identification of regions containing ftsZMt promoter activity In order to identify promoter activity-containing regions of ftsZ gene of M. tuberculosis H37Rv (ftsZMt) in vivo, different regions upstream of ftsZMt namely, the ftsQ-ftsZ intergenic region, the ftsQ open reading frame (ORF), and different regions of ftsQ ORF, were cloned in a gfp reporter plasmid and analyzed for gfp expression in M. smegmatis mc2155 cells. Flow cytometric analysis of exponentially grown M. smegmatis mc2155 cells containing these transcription fusion constructs revealed GFP expression in the cells harbouring ftsQ-ftsZ intergenic region (172 bp), the entire ftsQ ORF (945 bp), and 5’ 467 bp and 3’ 217 bp regions of ftsQ ORF. RT-PCR analyses on RNA from M. smegmatis mc2155 cell transformants carrying the entire ftsQ ORF-ftsQ-ftsZ intergenic region containing construct, as well as on total RNA from M. tuberculosis confirmed that the regions identified indeed elicit promoter activity. RT-PCR analysis on M. tuberculosis RNA as well as semi-quantitative RT-PCR analyses of gfp transcripts driven by cloned MtftsZ promoter regions in M. smegmatis cells showed that about 70% of the total promoter activity comes from ftsQ ORF and there is co-transcription of ftsQ-ftsZ genes. Multiple transcripts code for ftsZMt Primer extension analysis, using primers annealing at different positions in the ftsQ-ftsZ chromosomal region, on RNA from M. tuberculosis as well as from M. smegmatis transformants containing 1.117 kb ftsZMtpromoter region in a promoter probe vector, identified origin of six different transcripts (T1-T6) for the gene. Among them, five transcripts (T1, T2, T3, T4, and T6) were detected in M. tuberculosis cells at exponential phase of growth. T5 could be detected only in M. smegmatis transformants containing 1.117 kb ftsZMt promoter upstream of mycgfp2+ reporter gene. Transcript T1 and T2 originate in the ftsQ-ftsZ intergenic region, while T3, T4, and T6 start in the ftsQ ORF. Analysis of sequence in the –10 and –35 regions of the corresponding promoters for the individual transcripts identified high GC content of the regions, which is characteristic of promoters of M. tuberculosis. All of the individual promoter sequences were independently cloned in a promoter probe vector and confirmed that they are true promoters, active in M. smegmatis cells, and that the T1-T6 transcripts were not products of RNA processing. Differential expression from the multiple ftsZMt promoters In order to study the activity and regulation of ftsZMt promoters in M. tuberculosis cells, which is a slow grower and also asymptomatically survives as dormant bacteria for decades in human granuloma, a stably genome-integrated plasmid was required where activity of the promoters can be studied by means of stable and enhanced gfp expression. For that purpose, an L5-mycobacteriophage attP (attachment site)-specific integration proficient promoter probe vector, which contains a stable gfp gene (mycgfp2+) whose codon has been optimized for mycobacterial expression, was generated. Using the vector, all the six promoter regions (P1-P6) were studied in M. smegmatis and M. tuberculosis cells. Flow cytometric and semi-quantitative RT-PCR analyses showed that promoter P5 is unable to elicit activity in M. tuberculosis cells, unlike in M. smegmatis transformants. Semi-quantitative RT-PCR analyses showed that expression of P3 is only 10-20% of the total promoter activity. Promoters P1, P2, P4 and P6 showed 50-80% activity of the total promoter activity and their activity were comparable in M. smegmatis and M. tuberculosis. The presence of multiple promoters reflects the requirement to maintain high basal level of, or to differentially regulate a critical level of, FtsZ expression during different pathogenic stages of tubercle bacilli. In order to investigate the role of multiple promoters, we verified the levels of expression of the five transcripts from the five ftsZ promoters in M. tuberculosis cells under conditions of growth inside mouse macrophage cell line and also under various stress conditions mimicking those that exist in the granuloma environment, like conditions of nonreplicating persistence, gradual nutrient depletion stress, oxidative stress, surface tension stress, acidic stress, heat shock, DNA damaging conditions and osmotic stress. For this purpose, individual promoter regions were cloned into a stably inheritable gfp reporter plasmid vector, and into an L5 mycobacteriophage attP (attachment site)-specific integration-proficient variant of the same vector, for the expression of the promoters from the chromosomal locus in M. smegmatis and M. tuberculosis cells. Quantitative primer extension analyses, semiquantitative RT-PCR analyses on RNA from M. tuberculosis cells grown under these different conditions, and quantitative GFP fluorescence analyses in these cells showed differential activation of the five promoters under different conditions of growth. Under hypoxic and nutrient-depleted stationary phase of growth, two new promoters, Tdor and Ts, in the ftsQ ORF were identified, and these promoters showed maximal activity only under those specific conditions of growth. None of the ftsZ promoters were found to be responsive to stringent response mediated by overexpression of M. tuberculosis RelA. None of the promoters were also found to be responsive of overexpression of heat-shock sigma factor SigH in M. tuberculosis, implicating new pathway of regulation of ftsZ promoters. Multiple promoters driving expression of ftsZ gene of M. smegmatis Similar studies, which were carried out on the identification, structural and functional characterization, regulation of the promoters of cell division gene ftsZ in the fast growing saprophyte M. smegmatis cells, showed the presence of four ftsZ promoters, three of which originates from the 249 bp ftsQ-ftsZ intergenic region and one from the ftsQ ORF. RT-PCR analysis showed that both ftsQ and ftsZ are co-transcribed. Cloning and expression analysis of the individual promoters mapped by primer extension in a GFP based reporter plasmid showed that all the four putative regions are true promoters. Quantitative primer extension on RNA from a synchronously grown culture identified P2 promoter to be responsive to either initiation of cell division or stress, although expression of P1, P3, and P4 did not vary with respect to synchronous division. Quantitative primer extension analysis and semi-quantitative RT-PCR analysis on the RNA from M. smegmatis cells showed that under various stress conditions, P2 activity goes down significantly. Under nutrient depleted stationary phase and hypoxic nonreplicating persistence stage-2, the levels of P2 and P3 activity could hardly be detected, whereas, expression from P1 and P4 goes down only in hypoxia. Level of total ftsZ mRNA remains almost the same under various stress conditions, although upon hypoxia and stationary phase the level goes down almost two fold. Thus, in fast growing M. smegmatis too, multiple ftsZ promoters are differentially regulated under various stress conditions and a critical level of ftsZ mRNA is maintained. Taken together, the study of ftsZ promoters of a slow-growing pathogenic mycobacterium and a fast growing non-pathogenic mycobacterium indicate that differential expression of the multiple promoters, along with conditional activation of stage specific promoters like Pdor or Ps, is one of the mechanisms through which the bacilli probably maintain required levels of FtsZ protein that are crucial for the cell survival, probably through cytoskeletal maintenance, and cell division.

Page generated in 0.1049 seconds