• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolution of Floral Color Patterning in Chilean <em>Mimulus</Em>

Cooley, Arielle Marie 05 December 2008 (has links)
<p>Evolution can be studied at many levels, from phenotypic to molecular, and from a variety of disciplines. An integrative approach can help provide a more complete understanding of the complexities of evolutionary change. This dissertation examines the ecology, genetics, and molecular mechanisms of the evolution of floral anthocyanin pigmentation in four species of <em>Mimulus</em> native to central Chile. Anthocyanins, which create red and purple colors in many plants, are a valuable model for studying evolutionary processes. They are ecologically important and highly variable both within and between species, and the underlying biosynthetic pathway is well characterized. The focus of this dissertation is dramatic diversification in anthocyanin coloration, in four taxa that are closely related to the genomic model system <em>M. guttatus</em>. I posed three primary questions: (1) Is floral diversification associated with pollinator divergence? (2) What is the genetic basis of the floral diversification? (3) What is the molecular mechanism of the increased production of anthocyanin pigment? The first question was addressed by evaluating patterns of pollinator visitation in natural populations of all four study taxa. The second question was explored using segregation analysis for a series of inter- and intraspecific crosses. One trait, increased petal anthocyanins in <em>M. cupreus</em>, was further dissected at the molecular level, using candidate gene testing and quantitative gene expression analysis. Pollinator studies showed little effect of flower color on pollinator behavior, implying that pollinator preference probably did not drive pigment evolution in this group. However, segregation analyses revealed that petal anthocyanin pigmentation has evolved three times independently in the study taxa, suggesting an adaptive origin. In addition to pollinator attraction, anthocyanins and their biochemical precursors protect against a variety of environmental stressors, and selection may have acted on these additional functions. Molecular analysis of petal anthocyanins in <em>M. cupreus</em> revealed that this single-locus trait maps to a transcription factor, <em>McAn1</em>, which is differentially expressed in high- versus low-pigmented flowers. Expression of the anthocyanin structural genes is tightly correlated with <em>McAn1</em> expression. The results suggest that <em>M. cupreus</em> pigmentation evolved by a mutation cis to <em>McAn1</em> that alters the intensity of anthocyanin biosynthesis.</p> / Dissertation
2

Analysis of Selection and Genetic Drift in a Dioecious Plant : Spatial Genetic Structure and Selection in Phenotypic Traits in a Young Island Population of Silene dioica

Andersson, Bea Angelica January 2014 (has links)
Selection and genetic drift are often competing forces in shaping genetic structure in populations. Genetic drift will often effectively cancel out the effect of selection when population sizes are small, such as in colonizing island populations. On a small island in the Skeppsvik Archipelago in northern Sweden, a newly founded population of Silene dioica has been monitored since it first established around 1993. Though inhabiting an area of merely 173 m2, the population has been shown to exhibit a genetically differentiated patch structure where closely related individuals are tightly grouped, distanced from other family groups. In this study, the effect of selection was evaluated as compared to that of genetic drift. Variation in phenotypic traits in flowers, leaves and stalks were compared to that of neutral markers, in the form of PST and FST measures, to assess a measure of what proportion of differentiation among patches in phenotypic traits could not be attributed to genetic drift. Males and females were analysed separately to obtain measures of sex specific selection. Signs of divergent and stabilizing selection were found in several traits in both males and females despite the small spatial scale and short time since colonization. Further analysis is needed to assess explanations for trait divergence among patches and direction of selection.

Page generated in 0.0669 seconds