51 |
"Modelos lineares generalizados para análise de dados com medidas repetidas" / "Generalized linear models for repeated measures regression analysis"Maria Kelly Venezuela 04 July 2003 (has links)
Neste trabalho, apresentamos as equações de estimação generalizadas desenvolvidas por Liang e Zeger (1986), sob a ótica da teoria de funções de estimação apresentada por Godambe (1991). Essas equações de estimação são obtidas para os modelos lineares generalizados (MLGs) considerando medidas repetidas. Apresentamos também um processo iterativo para estimação dos parâmetros de regressão, assim como testes de hipóteses para esses parâmetros. Para a análise de resíduos, generalizamos para dados com medidas repetidas algumas técnicas de diagnóstico usuais em MLGs. O gráfico de probabilidade meio-normal com envelope simulado é uma proposta para avaliarmos a adequação do ajuste do modelo. Para a construção desse gráfico, simulamos respostas correlacionadas por meio de algoritmos que descrevemos neste trabalho. Por fim, realizamos aplicações a conjuntos de dados reais. / In this work, we consider the generalized estimation equations developed by Liang and Zeger (1986) focusing the theory of estimating functions presented by Godambe (1991). These estimation equations are an extension of generalized linear models (GLMs) to the analysis of repeated measurements. We present an iterative procedure to estimate the regression parameters as well as hypothesis testing of these parameters. For the residual analysis, we generalize to repeated measurements some diagnostic methods available for GLMs. The half-normal probability plot with a simulated envelope is useful for diagnosing model inadequacy and detecting outliers. To obtain this plot, we consider an algorithm for generating a set of nonnegatively correlated variables having a specified correlation structure. Finally, the theory is applied to real data sets.
|
52 |
Contribution à la sélection de variables en présence de données longitudinales : application à des biomarqueurs issus d'imagerie médicale / Contribution to variable selection in the presence of longitudinal data : application to biomarkers derived from medical imagingGeronimi, Julia 13 December 2016 (has links)
Les études cliniques permettent de mesurer de nombreuses variables répétées dans le temps. Lorsque l'objectif est de les relier à un critère clinique d'intérêt, les méthodes de régularisation de type LASSO, généralisées aux Generalized Estimating Equations (GEE) permettent de sélectionner un sous-groupe de variables en tenant compte des corrélations intra-patients. Les bases de données présentent souvent des données non renseignées et des problèmes de mesures ce qui entraîne des données manquantes inévitables. L'objectif de ce travail de thèse est d'intégrer ces données manquantes pour la sélection de variables en présence de données longitudinales. Nous utilisons la méthode d'imputation multiple et proposons une fonction d'imputation pour le cas spécifique des variables soumises à un seuil de détection. Nous proposons une nouvelle méthode de sélection de variables pour données corrélées qui intègre les données manquantes : le Multiple Imputation Penalized Generalized Estimating Equations (MI-PGEE). Notre opérateur utilise la pénalité group-LASSO en considérant l'ensemble des coefficients de régression estimés d'une même variable sur les échantillons imputés comme un groupe. Notre méthode permet une sélection consistante sur l'ensemble des imputations, et minimise un critère de type BIC pour le choix du paramètre de régularisation. Nous présentons une application sur l'arthrose du genoux où notre objectif est de sélectionner le sous-groupe de biomarqueurs qui expliquent le mieux les différences de largeur de l'espace articulaire au cours du temps. / Clinical studies enable us to measure many longitudinales variables. When our goal is to find a link between a response and some covariates, one can use regularisation methods, such as LASSO which have been extended to Generalized Estimating Equations (GEE). They allow us to select a subgroup of variables of interest taking into account intra-patient correlations. Databases often have unfilled data and measurement problems resulting in inevitable missing data. The objective of this thesis is to integrate missing data for variable selection in the presence of longitudinal data. We use mutiple imputation and introduce a new imputation function for the specific case of variables under detection limit. We provide a new variable selection method for correlated data that integrate missing data : the Multiple Imputation Penalized Generalized Estimating Equations (MI-PGEE). Our operator applies the group-LASSO penalty on the group of estimated regression coefficients of the same variable across multiply-imputed datasets. Our method provides a consistent selection across multiply-imputed datasets, where the optimal shrinkage parameter is chosen by minimizing a BIC-like criteria. We then present an application on knee osteoarthritis aiming to select the subset of biomarkers that best explain the differences in joint space width over time.
|
53 |
Avaliação de técnicas de diagnóstico para a análise de dados com medidas repetidas / Evaluation of diagnostic techniques for the analysis of data with repeated measuresKurusu, Ricardo Salles 26 April 2013 (has links)
Dentre as possíveis propostas encontradas na literatura estatística para analisar dados oriundos de estudos com observações correlacionadas, estão os modelos condicionais e os modelos marginais. Diversas técnicas têm sido propostas para a análise de diagnóstico nesses modelos. O objetivo deste trabalho é apresentar algumas das técnicas de diagnóstico disponíveis para os dois tipos de modelos e avaliá-las por meio de estudos de simulação. As técnicas apresentadas também foram aplicadas em um conjunto de dados reais. / Conditional and marginal models are among the possibilities in statistical literature to analyze data from studies with correlated observations. Several techniques have been proposed for diagnostic analysis in these models. The objective of this work is to present some of the diagnostic techniques available for both modeling approaches and to evaluate them by simulation studies. The presented techniques were also applied in a real dataset.
|
54 |
Avaliação de técnicas de diagnóstico para a análise de dados com medidas repetidas / Evaluation of diagnostic techniques for the analysis of data with repeated measuresRicardo Salles Kurusu 26 April 2013 (has links)
Dentre as possíveis propostas encontradas na literatura estatística para analisar dados oriundos de estudos com observações correlacionadas, estão os modelos condicionais e os modelos marginais. Diversas técnicas têm sido propostas para a análise de diagnóstico nesses modelos. O objetivo deste trabalho é apresentar algumas das técnicas de diagnóstico disponíveis para os dois tipos de modelos e avaliá-las por meio de estudos de simulação. As técnicas apresentadas também foram aplicadas em um conjunto de dados reais. / Conditional and marginal models are among the possibilities in statistical literature to analyze data from studies with correlated observations. Several techniques have been proposed for diagnostic analysis in these models. The objective of this work is to present some of the diagnostic techniques available for both modeling approaches and to evaluate them by simulation studies. The presented techniques were also applied in a real dataset.
|
Page generated in 0.1745 seconds