Spelling suggestions: "subject:"thermobarometry"" "subject:"geothermobarometry""
11 |
Characteristics of the late Mesozoic tectonic evolution of the South China block and geodynamic implications : Multi-approach study on the Qingyang-Jiuhua, Hengshan and Fujian coastal granitic massifs / Caractéristiques de l’évolution de la partie orientale du bloc de Chine du Sud au Mésozoïque supérieur et implications géodynamiques : Etude pluridisciplinaire de la mise en place des massifs granitiques de Qingyang-Jiuhua, Hengshan et de la côte du Fujian et des structures tectoniques associéesWei, Wei 27 December 2013 (has links)
La vaste distribution géographique et la longue durée du magmatisme au Mésozoïque supérieur (Jurassique et Crétacé) en Chine du Sud présente le cas unique dans le monde. Ceci présente un laboratoire naturel très favorable a l’étude des processus de magmatogénèse, et des modes de mise place des plutons granitiques. Il permet également d’aborder l’analyse des relations magmatisme-tectonique et les contextes géodynamiques de la mise en place de magma dans leur cadre lithosphérique. Depuis les années 50, et surtout les années 90, des scientifiques ont mis un effort important sur la cartographie géologique, mené des études pétrologiques et géochronologiques et ainsi obtenu une base solide pour la compréhension de l’évolution tectonique du Bloc de Chine du Sud (SCB). Cependant, des questions fondamentales restent encore sans réponses ou vivement débattues. Dans le but de progresser sur ces sujets fondamentaux, nous avons mené des études pluridisciplinaires sur les massifs d’âge Mésozoïque supérieur de Qingyang-Jiuhua (Province d’Anhui), Hengshan (Province de Hunan) et certains plutons affleurant dans la zone côtière du Fujian. Le choix des massifs est fonde sur leur distance variable par rapport à la paléozone de subduction, les âges comparables de ces massifs et les déformations associées. Les méthodes d’étude comprennent l’observation de terrain, l’analyse microscopique de lames minces, la datation par U-Pb de monazite, l’ASM, le paléomagnétisme, la modélisation gravimétrique et la barométrie à partir de Al-total dans l’amphibole magmatique. Bien que chaque massif présente des caractéristiques distinctes, ils partagent des points communs du point de vue de leur orientation préférentielle, de la déformation de leurs encaissants et de l’influence de la tectonique régionale sur leur mise en place, D’après nos nouveaux résultats et en intégrant les données précédentes, nous discutons dans cette thèse les contextes tectoniques de mise en place de ces massifs granitiques et l’évolution géodynamique de SCB, et proposons un scénario géodynamique en 3 étapes. (1) Pendant la période 145-130 Ma, la subduction vers le NW de la plaque Paléo-Pacifique sous le continent asiatique fait rapprocher le micro-continent de l’Ouest-Philippines avec le continent de Chine du Sud, produisant l’important magmatisme d’arc et formant un régime tectonique en extension en SCB ? Dans l’arrière-arc; (2) Pendant la période 130-110 Ma, dûe à la collision entre le micro-continent de l’Ouest Philippines et SCB, une structure compressive vers le NW a été développée dans la zone de Changle Nan’ao, produisant des déformations ductiles. Cependant, l’intérieur de la partie orientale du SCB était encore en régime tectonique extensif de direction NW-SE; (3) Pendant la période 105-90Ma, une nouvelle zone de subduction a été développée au SE du micro-continent de l’Ouest Philippines, le panneau subductant atteint la zone de Changle-Nan’ao, avec probablement des morceaux de panneau cassé, provocant l’ascension de l’asthénosphère, responsable de la mise en place d’importants massifs granitiques et de filons. La tectonique de SCB pendant cette période est caractérisée par un système tectonique d’extension générale. Ce dispositif a été significativement perturbe par l’ouverture oligo-miocène de la mer de Chine du Sud et par la compression miocène de la marge à Taiwan. Ce modèle géodynamique reste à être amélioré par de futures investigations géologiques, géophysiques et géochimiques. / The vast distribution and long duration of the Late Mesozoic magmatism in the eastern part of South China presents a unique case in the world. This offers a natural laboratory to study the process of magma genesis, the magma emplacement mode, the relationship between magmatism and tectonics, the geodynamic role on the magma emplacement and lithospheric evolution. Since 50’s, particularly 90’s of the last century, geoscientists have made important efforts in geological cartography and carried out numerous studies with remarkable scientific achievements, building a solid background to understand the tectonic evolution of the South China Block (SCB). However, certain fundamental questions mentioned above remain unsolved and/or are in hot debate. In order to make progress in these scientific issues, we have carried out in a multi-disciplinary study in the Late Mesozoic Qingyang-Jiuhua massif, Hengshan massif and Fujian coastal zone according to their distance with respect to the paleo subduction zone of the Paleo-Pacific plate, the ages of granitic massifs and related tectonics, including field observation on the structure geology, micro-observation on thin section, U-Pb dating on monazite, AMS, paleomagnetism, gravity modeling and P condition concern the granite emplacement. In the view of deformation in these granitic massifs and their country rocks, mode and influence of regional tectonics on the emplacement, though each studied zone reveals its distinguished characteristics, they show some intrinsic and common relationships between them. With our new results and integrating previous data, in this thesis, we discuss the tectonic context of emplacement of these Late Mesozoic magmatic massifs and the geodynamic evolution of the SCB., We propose a 3-step geodynamic model: (1) during 145-130 Ma period, the Paleo-Pacific plate subducted northwestwardly, the West Philippines micro-continent, approaching to SCB, important subduction-related arc volcanism was produced in the coastal areas of Southeast China coast (Zhejiang-Fujian-Guangdong), forming a back-arc extension tectonic system in SCB; (2) during 130-110 Ma period, due to the collision between the West Philippines microcontinent and SCB, the compressional tectonic structures were developed in the Changle-Na’ao coastal zone, producing ductile deformation zones. However, the inland of the eastern part of SCB was under a NW-SE extensional tectonic regime; (3) during 105-90 Ma period, a new subduction zone was developed in the SE flank of the West Philippines micro-continent, the subducting slab reached the Changle-Nan’ao tectonic belt, with the possible break-off of slab, the asthenospheric ascent was responsible for the important emplacement of plutonic massifs and dykes. The tectonics of the eastern part of SCB was characterized by a general extensional system in this period. This tectonic pattern has been significantly disturbed by the Oligocene-Eocene opening of the South China sea,and the Miocene shortening of the SCB margin in Taiwan. Of course, this model should be improved by more geological, geophysical and geochemical investigations.
|
12 |
The Petrogenesis Of The Station Creek Igneous Complex And Associated Volcanics, Northern New England OrogenTang, Eng Hoo Joseph January 2004 (has links)
The Station Creek Igneous Complex (SCIC) is one of the largest Middle-Late Triassic plutonic bodies in the northern New England Orogen of Eastern Australia. The igneous complex comprises of five plutons - the Woonga Granodiorite (237 Ma), Woolooga Granodiorite (234 Ma), Rush Creek Granodiorites (231 Ma) and Gibraltar Quartz Monzodiorite and Mount Mucki Diorite (227 Ma respectively), emplaced as high-level or epizonal bodies within the Devonian-Carboniferous subduction complex that resulted from a westward subduction along the east Australian margin. Composition of the SCIC ranges from monzogabbro to monzogranite, and includes diorite, monzodiorite, quartz monzodiorite and granodiorite. The SCIC has the typical I-type granitoid mineralogy, geochemistry and isotopic compositions. Its geochemistry is characteristics of continental arc magma, and has a depleted-upper mantle signature with up to 14 wt% supracrustal components (87Sr/86Srinitial = 0.70312 to 0.70391; Nd = +1.35 to +4.9; high CaO, Sr, MgO; and low Ni, Cr, Ba, Rb, Zr, Nb, Ga and Y). The SCIC (SiO2 47%-76%) has similar Nd and Sr isotopic values to island-arc and continentalised island-arc basalts, which suggests major involvement of upper mantle sourced melts in its petrogenesis. SCIC comprises of two geochemical groups - the Woolooga-Rush Greek Granodiorite group (W-RC) and the Mount Mucki Diorite-Gibraltar Quartz Monzodiorite group (MMD-GQM). The W-RC Group is high-potassium, calc-alkalic and metaluminous, whereas the MMD-GQM Group is medium to high potassium, transitional calc-alkalic to tholeiitic and metaluminous. The two geochemical groups of the SCIC magmas are generated from at least two distinct sources - an isotopically evolved Neoproterozoic mantle-derived source with greater supracrustal component (10-14 wt%), and an isotopically primitive mafic source with upper mantle affinity. Petrogenetic modeling using both major and trace elements established that the variations within respective geochemical group resulted from fractional crystallisation of clinopyroxene, amphibole and plagioclase from mafic magma, and late fractionation of alkalic and albitic plagioclase in the more evolved magma. Volcanic rocks associated with SCIC are the North Arm Volcanics (232 Ma), and the Neara Volcanics (241-242 Ma) of the Toogoolawah Group. The major and trace element geochemistry of the North Arm Volcanics is similar to the SCIC, suggesting possible co-magmatic relationship between the SCIC and the volcanic rock. The age of the North Arm Volcanics matches the age of the fractionated Rush Creek Granodiorite, and xenoliths of the pluton are found within epiclastic flows of the volcanic unit. The Neara Volcanics (87Sr/86Sr= 0.70152-0.70330, 143Nd/144Nd = 0.51253-0.51259) differs isotopically from the SCIC, indicating a source region within the HIMU mantle reservoir (commonly associated with contaminated upper mantle by altered oceanic crust). The Neara Volcanics is not co-magmatic to the SCIC and is derived from partial melting upper-mantle with additional components from the subducting oceanic plate. The high levels emplacement of an isotopically primitive mantle-derived magma of the SCIC suggest periods of extension during the waning stage of convergence associated with the Hunter Bowen Orogeny in the northern New England Orogen. The geochemical change between 237 to 227 Ma from a depleted-mantle source with diminishing crustal components, to depleted-mantle fractionate, reflects a fundamental change in the source region that can be related to the tectonic styles. The decreasing amount of supracrustal component suggests either thinning of the subduction complex due to crustal attenuation, leading to the late Triassic extension that enables mantle melts to reach subcrustal levels.
|
Page generated in 0.7681 seconds