• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 4
  • Tagged with
  • 50
  • 50
  • 50
  • 23
  • 17
  • 14
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Petrology and geochemistry of the basal gabbro unit, Uitkomst complex

Strauss, Toby Anthony Lavery January 1996 (has links)
The Cu/(Cu+Ni) ratios associated with the Basal Gabbro also display the vertical reverse fractionation trend, supporting the supercooled margin model. The disseminated sulphides in the lowermost units, are regarded as being the result of sulphur saturation induced by contamination from the dolomitic and quartzitic xenoliths. This is supported by isotope data which indicate the high degree of contamination in the lowermost units of the Complex. The results of this study are used to propose a model for the petrogenesis and metallogenesis of the Uitkomst Complex, whereby the Complex is closely related to the Bushveld Complex. The Basal Gabbro, as supported by its chemistry and style of mineralisation (Cu-rich), represents a supercooled margin to the lowermost units of the Uitkomst Complex, which stoped upwards into the surrounding sediments, assimilating the country rock xenoliths, and precipitating sulphides. Following this was a period in which large quantities of magma moved laterally through the system before the magma flow waned, and closed system crystallisation ensued. As the body cooled, the primarily magmatic water was superceded by the hydrothermal magmatic water released from the xenoliths, and later by geothermally driven circulating meteoric water, producing the extensive alteration. This alteration was accompanied by considerable stress and the development of fractures and shears. Finally the Complex was itself intruded by diabase sills and later dolerite dykes.
22

The geology, geochemistry and stratigraphic correlations of the farm Rietfontein 70 JS on the south -eastern flank of the Dennilton Dome, Transvaal, South Africa

Crous, Stephanus Philippus January 1996 (has links)
The study area is located between Loskop Dam and the town of Groblersdal, on the southeastern flank of the Dennilton dome, and is underlain by lithologies of the Pretoria Group, Bushveld Complex mafics and ultramafics and acid lavas that resort under the Rooiberg felsites. Field work comprised of geological mapping, soil-, hard-rock- and stream sediment geochemistry, various geophysical techniques and diamond drilling. The rocktypes that resembles the Rustenburg Layered Suite on the farm Rietfontein 70JS is subdivided into a Mixed Zone, Critical Zone and Main Zone, on grounds of geochemical and certain geophysical attributes. The Mixed Zone that overlies the Bushveld Complex floor-rocks, is furthermore separated into an i) Lower-, ii) Middle- and, iii) Upper Unit. The Lower Unit of the Mixed Zone consists primarily of magnetite-gabbros, iron-rich pegmatites, harzburgites and feldspathic pyroxenites. The Fe-rich constituents of this stratigraphic horizon generates a pronounced magnetic anomaly within the study area. On the basis of; amongst other parameters, Zr/Rb and Sr/Al₂0₃ ratios, the magnetite-gabbros are postulated to conform to lithotypes in the vicinity of magnetite layers 8 to 14 of Upper Zone Subzone B in a normal Bushveld Complex stratigraphical scenario. Similarly, it is argued that the feldspathic pyroxenites and norites that display elevated chromium values are analogues to normal Critical Zone rocktypes of the Rustenburg Layered Snite. A more elaborate and precise stratigraphic correlation for the Critical zone was, however, not possible. It is advocated that a volume imbalance was created by the hot, ascending mafic magmas of the intruding Bushveld Complex, resulting in the updoming of certain prevailing basement features such as the Dennilton Dome. In addition to this ideology, it is proposed that the Mineral Range Fragment is in fact a large xenolith underlain by mafics, after being detached from the Dennilton Dome during the intrusion event. Evidence generated by this study unequivocally indicate that the potential for viable PGE's, Ni, Cu and Au within a Merensky Reef- type configuration or a Plat Reef-type scenario under a relatively thin veneer of acid Bushveld Complex roof-rocks on the eastern flank of the Dennilton Dome, appears feasible.
23

The mineralogy and geochemistry of the Voëlwater banded iron-formation, Northern Cape Province

Tsikos, Harilaos January 1995 (has links)
Banded iron-formations (BIFs) are chemically precipitated sedimentary rocks in which Fe-rich bands or laminae alternate with Fe-poor ones. They formed within a specific time-span of the geological record. Their occurrence is restricted between 2.3 and 1.9 Ga, and characterises virtually all the major Precambrian-aged sedimentary basins of the world. The Precambrian Transvaal Basin in Griqualand West, South Africa, is noted for its well-developed BIF units. The Kuruman and Griquatown BIFs comprising the Asbesheuwels Subgroup (up to 1000m thick) are the best known and thickest of these. As far as metallogenesis is concerned, the Kuruman BIF is of major importance, for it carries the world's largest crocidolite (blue asbestos) deposits. The uppermost, youngest member of iron-formation deposition in the Griqualand West Sequence is represented by the Voëlwater BIF. The direct association between the latter and the giant Mn-deposits of the Kalahari Field, renders the Voëlwater association unusual, if not unique, in the geological record. The Voëlwater BIF represents a typical example of the so-called "Superior-type", and in the area of study it has undergone late-diagennetic to low-grade metamorphic processes. This is evident from the mineralogical composition and textural signature of the various BIF lithologies. Specifically, the minerals that make up the Voëlwater BIF are mainly chert(quartz), Fe-oxides (magnetite and hematite), Fe-silicates (greenalite, stilpnomelane, minnesotaite, riebeckite, Fe-mica), Fe-carbonates (members of the dolomite-ankerite series and siderite), calcite and pyrite. Soft-sediment deformation structures and shear-stress indicators are abundant in carbonate-rich and granular, silicate-rich BIF lithologies respectively. The bulk chemical composition of the study rocks is relatively simple and is characterised by the abundance of essentially three elements, namely Si, Fe, and Ca, which make up more than 90% of the total chemical composition of the Voëlwater BIFs. The detrital component of the study rocks is negligible. Mn-enrichments characterise all the transitional lithologies towards the interbedded Mn-orebodies, as well as the well-developed, hematitic BIF-unit between the Ongeluk lavas and the lower Mn-horizon. In terms of trace element composition, no significant enrichments or depletions, were encountered, except for some unusually high values of Sr and Ba and Co in carbonate-rich and Mn-rich lithologies respectively. Geochemical comparisons on the basis of major, trace and light rare-earth element composition verified the similarity between the Voëlwater BIF and other major Superior-type BIFs of the world (e.g. Kuruman, Griquatown, Sokoman, Biwabik, Gunflint, Mara-Mamba, Brockman, etc.). The processes that led to the formation of the Voëlwater BIFs may have been very similar to the ones described in various genetic models proposed in recent years. They would have involved a combination of: i. hydrothermal processes related to mid-ocean ridge (MOR) or hot-spot activity that acted as major iron suppliers; ii. storm-mixing in stratified oceans (bottom, anoxic, Fe⁺² reservoir-thermo- pycnocline zone-upper, mixed, SiO₂-saturated layer), largely dictated by seasonal changes and contemporaneous volcanism; iii. periodic, convection-driven upwelling mechanisms acting as major Fe-precipitators; and, iv. organic carbon productivity that was responsible for the anoxic diagenesis of the initial sediment. However, the origin of Fe and Mn for the genesis of the Voëlwater sediments was difficult to explain with typical convection-cell models in active mid-ocean ridges, in contrast to previous hypotheses. Instead, large-scale endogenous processes in the form of magma convection, underplating, differentiation and associated degassing, may have played a critical role in the supply of metals for the formation of large amounts of BIFs in the Precambrian. The present study of the Voëlwater BIF also bears strong implications regarding the metallogenesis of Mn in the Precambrian. The common association of Mn with carbonate-bearing sediments, the transitional character of the Voëlwater BIF towards carbonate lithologies (Mooidraai dolomites) and the critical timing of the deposition of the former in terms of the Precambrian atmospheric-lithospheric- hydrospheric evolution, may be important indicators for the exploration of large Mn-deposits in Precambrian sedimentary basins of the world.
24

Lithostratigraphic correlation, mineralogy and geochemistry of the lower manganese orebody at the Kalagadi Manganese Mine in the Northern Cape Province of South Africa

Rasmeni, Sonwabile January 2012 (has links)
The Kalagadi Manganese mine in the Kuruman area of the Northern Cape Province of South Africa contains reserves of Mn ore in excess of 100Mt. Mineralization in the mine lease area is restricted within the Hotazel Formation of the Voȅlwater Subgroup, belonging to the Postmasburg Group, the upper subdivision of the Transvaal Supergroup. Surface topography is characterized by flat lying, undulation with minimal faulting and the ore are slightly metarmophosed. This study investigates the general geology of the mine, lithostratigraphic subdivision and correlation of the economic Lower Manganese Orebody (LMO) of the Kalagadi Manganese Mine in order to guide mining plan and operations once the mine is fully commissioned. At the commencement of this study, Kalagadi Manganese mine was a project under exploration with no specific geology of the mine lease area and no lithostratigraphic subdivision. The study also aimed determining the extent of lithostratigraphic correlation between the LMO economic orebodies of the Kalagadi Manganese mine with that of underground Gloria and open-pit Mamatwan mines. Four methods including petrographic microscope, Scanning electron Microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were applied mainly for the mineral identification, chemical composition and ore characterization of the Lower Manganese Orebody (LMO) at Kalagadi Manganese mine. The results of this study indicates the following: (1) Eleven textural distinct zones with economic zones restricted to the middle while the lower grade zones are confined to the top and bottom of the LMO; (2) The economic zones, comprising of Y, M, C and N subzones attain an average thickness of 10 m and are graded at an average of 40% Mn while the Mn/Fe ratio varies from 6 to 9; (3) The most economic zones are M and N subzones which are mostly characterized by oxidized ovoids and laminae, a characteristic applicable even to other zones of economic interest; (4) Braunite is the main mineral of the manganese ore and is often integrown with kutnahorite and other minerals (hematite, hausmannite, Mg-calcite, calcite, jacobsite, serpentine and garnet) which are present in variable amounts; (5) The Mg-rich calcite (Ca, Mg)CO3 is the second dominant manganese carbonate mineral and it corresponds to elevated MgO concentration and is often associated with marine environment. The occurrence of the Mgcalcite is not common in the manganese ore of this area except for the Mn-calcite, which was not determined by XRD analyses in this study; (6) MnO is the most abundant major oxide in the manganese ore while other major oxides present in decreasing order of abundance are CaO, SiO2, Fe2O3, and MgO. The oxides TiO2, Na2O, K2O, Al2O3, and Cr2O3 are depleted and are mostly  0.01wt% and  0.001wt% respectively while P2O5 concentrations are low ranging from 0.02wt% to 0.3wt%. The trace element concentrations of Ba, Zn and Sr in most borehole samples are slightly elevated ranging from 100ppm to 3.9% (36000pm) while Co, Cu, Ni, Y, As, Zr, V and La rarely exceed 50ppm. The enrichments of Cu, Zn, Ni, Co and V that are commonly associated with volcanogenic hydrothermal input in chemicals may reach up to 70ppm; (7) The mineralogical and geochemical characteristics of the manganese ore in the Kalagadi Manganese mine lease area are similar to that of Low-Grade Mamatwan-Type ore. The cyclicity (Banded Iron Formation ↔ Hematite lutite ↔ braunite lutite) and alternation of manganese and iron formation have been confirmed; and (8) The oxygen δ18O isotope values (18‰ to 22‰) indicate a slight influence of metamorphism of the manganese ore. No positive correlation exists between δ13C vs δ18O values and Mn vs δ13C values. Such observations indicate minimal action of organic carbon during manganese precipitation where the organic matter was oxidized and manganese content reduced. On the other hand, the manganese carbonates (CaO) are positively correlated with carbon isotope, this indicates diagenetic alteration and the involvement of biogenic carbonate during the formation of manganese carbonates. It is concluded that the lithostratigraphic subdivision at Kalagadi Manganese mine is best correlated physically, mineralogically and geochemically with that of Gloria mine operating in the Low Grade Mamatwan - Type ore while correlation with an open-pit Mamatwan mine is also valid.
25

Exploration geochemical mapping in the north-eastern sector of the Morokweng impact structure, South Africa

Yang, Jin January 2006 (has links)
Magister Scientiae - MSc / The Morokweng impact structure which is located in the North West province of South Africa, has attracted attention as a potential host for Ni-PGE mineralization. Geochemical exploration techniques using hydroxylamine partial extraction were used to determine the nature and source of surface geochemical anomalies known to occur in the overlying aeolian sang regolith. About 40 aeolian samples were taken from an area of about 35 square kilometer, located in the north eastern sector of the Morokweng impact structure. The samples were sieved to various grain size fractions and partially extracted using varying concentration of hydroxylamine hydrochloride at 50° / South Africa
26

Mineralogy, geochemistry and health impacts of earth materials consumed by humans in Vhembe District, Limpopo Province, South Africa

Momoh, Abhuh 17 September 2013 (has links)
PhD.G (Environmental Geology) / Department of Mining and Environmental Geology
27

Hydrocarbon evolution of the Bredasdorp Basin, offshore South Africa : from source to reservoir

Davies, Christopher Paul Norman, Rozendaal, A., Burger, B. V. 12 1900 (has links)
Thesis (PhD (Geology))--University of Stellenbosch, 1997. / 1123 leaves printed on single pages, preliminary pages and numbered pages 1-286. Includes bibliography, list of figures and tables and explanation of abbreviations used. / Digitized at 600 dpi grayscale to pdf format (OCR), using a Bizhub 250 Konica Minolta Scanner. / ENGLISH ABSTRACT: This first comprehensive study of the petroleum geochemistry of the Bredasdorp Basin, and the adjacent Southern Outeniqua Basin, documents the characteristic large number of hydrocarbon shows and the four regionally distinctive marine source rocks. Detailed correlation of reservoired hydrocarbons with source rock bitumens shows that two source rocks have expelled oil in commercial quantities and two others have expelled commercial quantities of wet gas/condensate. In contrast with earlier studies which indicated that thermal 'gradualism' prevailed, this study indicates that the post-rift thermal history of the basin is very complex. Post-rift cool-down is punctuated by periods of rapidly increasing heat flow resulting in much of the maturation being localised in time. These periods of increased heating coincide with regional plate tectonism. The associated thermal uplift and downwarp effects govern the periods of trap formation and control the hydrocarbon migration direction. Migration distances of these hydrocarbons are described and show inter alia that oil migrates no more than -7-10 km but gas migrates regionally. Two regional episodes of meteoric water flushing reduce sandstone cementation in palaeo-highs forming potential reservoirs at specific times. The unusually low salinity of remnants of this water in some sandstones help characterise these two main migration conduits. A highly detailed hydrocarbon correlation scheme derived from gas, light oil and biomarker data has been established which differentiates products of the four active source rocks and helps characterise the oil-oil, oil-source and source-source pairs. It is evident from these correlations that two periods of migration and reservoiring occurred at 50-60 Ma and 0-10 Ma. As a result, source-reservoir plays which characterise certain areas of the basin as predominantly oil or gas prone can be described. These correlations also highlight areas where mixtures of hydrocarbons are common and where some of the early reservoired oil has been displaced to new locations, constituting potential new exploration plays. Source rocks for some of the analysed hydrocarbons have yet to be found and may not even have been drilled to date. One such source rock appears to be located in the Southern Outeniqua Basin, making that area a potential target for further exploration. This study resolved the common heritage of the source rocks and reservoir sandstones which form part of the Outeniqua petroleum system. The hydrocarbon volumes available to this system show that by world standards it is indeed significant. / AFRIKAANSE OPSOMMING: Die groot aantal koolwaterstof voorkomste asook vier streekskenmerkende mariene brongesteentes word in hierdie eerste omvattende studie van die petroleumgeochemie van die Bredasdorp-kom en die aangrensende Suidelike Outeniqua-kom saamgevat. Gedetaileerde korrelasies van die opgegaarde koolwaterstowwe met brongesteente bitumen, dui daarop dat twee van die vier geidentifiseerde brongesteentes olie in kommersiele hoeveelhede uitgeset het. Die ander twee het kommersiele hoeveelhede nat gas-kondensaat uitgeset. In teenstelling met vroeer studies wat daarop gedui het dat termale 'gradualisme' voorgekom het, dui hierdie studie daarop dat die na-riftermale geskiedenis van die kom baie meer kompleks is. Verskeie periodes van versnelde toename in hittevloei het voorgekom in die na-rifse verkoeling. Dit het daartoe gelei dat veroudering plaaslik binne 'n beperkte tydsverloop plaasvind. Hierdie periodes van hittetoename stem ooreen met die regionale plaattektoniek. Die geassosieerde termiese opheffing en afwaartse vervormingseffek, beheer die totstandkoming van opvanggebiede en die migrasierigting van die koolwaterstowwe. Migrasie-afstande van die koolwaterstowwe word bespreek en wys inter alia daarop dat olie nie verder as -7-10 km beweeg nie, maar gasmigrasie vind regionaal plaas. Twee kort episodes van meteoriese wateruitsetting, het sandsteensementasie in palaeohoogsliggende gebiede verminder wat potensiele reservoirs gevorm het op spesifieke tye. Die ongewone lae soutvlakte van oorblyfsels van die water in sekere sandstene help om die twee vernaamste migrasieroetes te kenmerk. 'n Hoogs omvattende koolwaterstof-korrelasieskema wat van gas, ligte olie en biomerkerdata verkry is, is opgestel. Die skema het onderskei tussen produkte van die vier aktiewe brongesteentes en help om die olie-olie, olie-bron en bron-bron pare te karakteriseer. Dit is duidelik van die korrelasies dat twee periodes van migrasie en opgaring plaasgevind het ongeveer teen -50-60 Ma en 0-10 Ma. Gevolglik kan bronreservoir omskrywings wat sekere dele van die kom karakteriseer as grotendeels olie of gas-ontvanklik beskryf word. Hierdie korrelasies beklemtoon ook areas waar mengsels van koolwaterstowwe algemeen voorkom en waar sekere van die vroeer opgegaarde olie verplaas is na nuwe lokaliteite, wat nuwe eksplorasieteikens daarstel. Brongesteentes vir sekere van die ge-analiseerde koolwaterstowwe, moet nog gevind word en is tot op hede nog nie raakgeboor nie. Een so 'n brongesteente kom voor in die Suidelike Outeniqua-kom, wat daardie area 'n potenslele teiken vir verdere eksplorasie maak. Die studie het die gesamentlike oorsprong van die brongesteente en reservoirsandsteen, wat deel is van die Outeniqua Petroleumsisteem, geidentifseer. Die koolwaterstofvolumes wat beskikbaar is vir die sisteem wys dat, gemeet teen wêreldstandaarde, dit wel beduidend is.
28

Petrology, geochronology and provenance of the Laingsburg and Tanqua Karoo submarine fan systems, Ecca Group, South Africa

Nguema Mve, Oliver Patrice 12 1900 (has links)
Thesis (MSc (Earth Sciences))—University of Stellenbosch, 2005. / The integration of whole-rock chemistry, heavy mineral chemistry, detrital zircon morphology and age dating has enabled high-resolution characterization of the Permian Laingsburg and Tanqua submarine fan provenance in the Karoo Basin, upper Ecca Group, South Africa. Geochemically, the Laingsburg and Tanqua sandstones are classified as greywacke and litharenite. The chemical index of alteration values for these sandstones suggest low to moderately weathered sources and a relatively cold climate. Abundant angular clastic grains and lithic fragments as well as the predominance of pristine zircons indicate a near provenance and a first cycle derivation. The investigated sandstones originated from a continental island arc and an active continental margin. The source is dominantly intermediate to felsic and includes tonalites, granodiorites, and adamellites or their volcanic equivalents.
29

Using electromagnetic methods to map and delineate high-grade harzburgite pods within the Ni-Cu mineralised Jacomynspan ultramafic sill, Northen Cape, South Africa

Ushendibaba, Mhaka January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2016. / The Jacomynspan Ni-Cu sulphide mineralisation is hosted within a 100m thick steeply dipping tabular, differentiated, sill of mafic to ultramafic composition intruded into country gneissic rocks of the Namaqualand Metamorphic complex. This sill is predominantly composed of tremolite schist (metamorphosed pyroxenite) containing lenticular bodies of harzburgite. The harzburgite generally hosts net-textured mineralisation with up to 50% by volume of the rock. Massive sulphide veins and stringers are occasionally present within the harzburgite. The sulphide minerals are a typical magmatic assemblage of pyrrhotite, chalcopyrite and pentlandite. The sill covers an approximate strike length of about 5km but only a small portion covering 1km x 1km was selected for this study. Physical property studies carried out on the drill core (magnetic susceptibility and conductivity) indicate that the country gneissic rocks are not conductive and neither are they magnetically susceptible. However, the mineralized sill has elevated values of both magnetic susceptibility and relative conductivity compared to its host making it a suitable target for both magnetic and electromagnetic inversion. Drilling done so far on the study area has shown that the well-mineralised harzburgite (hosted within the poorly mineralised ultramafic sill) is not a continuous body but occurs in ‘pockets’. There is therefore need to use the available geophysical and geological datasets to derive a model of these well mineralised pods. This study is therefore intended to assess the feasibility of using electromagnetic (EM) methods together with other geophysical methods and geology in obtaining a model of the harzburgite pods hosted within the less conductive poorly mineralised ultramafic sill in order to guide further drilling. Geosoft’s VOXI Earth Modelling software was used to model the high resolution airborne magnetic data for this study. Cooper’s Mag2dc (www.wits.ac.za) and Stettler’s Magmodintrp software (personal communication, 2015) was also used during modelling of the magnetic data to compliment the modelling from VOXI. The mineralised ultramafic sill was clearly mapped in both the 3D model representation from Mag2dc modelling and VOXI’s 3D unconstrained smooth model inversion for the study area. Based on the physical properties studies carried out on the study area, EM data (both ground and downhole EM) were modelled using Maxwell software. The poorly mineralised tremolite schist was clearly modelled. In order to better constrain the targets, an assumption was made that at late decay times the currents would be focused in the centre of the large EM plate probably giving an indication of the most conductive part of the intrusion. Smaller ‘Resultant EM plates’ of dimensions, 300mx300m that coincide with the centre of the large EM plates (with a conductance above 100S) were constructed in iv Maxwell software and integrated with the DXF file of the Micromine geology model of the well mineralised harzburgite clearly mapping the well-mineralised harzburgite and showing its possible extensions. 2D inversion modelling was conducted on all audio-frequency magnetotelluric (AMT) data for this study area. The modelling results clearly mapped the mineralised intrusion.
30

The petrography and geochemistry of the Platreef on the farm Townlands, near Potgietersrus, northern Bushveld Complex

Manyeruke, Tawanda Darlington 28 April 2005 (has links)
The Platreef is a platinum group element (PGE) and base metal enriched mafic/ultramafic layer situated along the base of the northern (Potgietersrus) limb of the Bushveld Complex. It represents an important resource of PGE which is only in its early stages of exploitation. The present study contains a detailed petrographic and geochemical investigation of a borehole core drilled on the farm Townlands. At this locality, the Platreef rests on metasedimentary rocks of the Silverton Formation of the Transvaal Supergroup, and is comprised of three medium grained units of gabbronorite/feldspathic pyroxenite that are separated by hornfels interlayers. I refer to the three platiniferous layers as the Lower, Middle and Upper Platreef. The Middle Platreef is the main mineralized layer, with total PGE contents up to 4 ppm. The Lower and Upper Platreefs are less well mineralized (up to 1.5 ppm). Trace element and S-isotope data show compositional breaks between the different platiniferous layers suggesting that they represent distinct sill-like intrusions. The study also reveals a reversed differentiation trend of more primitive rocks towards the top of the succession. For example, pyroxene shows an increase in Cr2 O3 with height couples with a decrease in TiO2 . Olivine from the Upper Platreef has Fo contents between 80-83 (averaging Fo81) and those from the Middle Platreef have Fo from 78-83 (averaging Fo79 ). The Upper and Lower Platreefs have <FONT FACE="SYMBOL">d</FONT> 34S values averaging 80/00 while the Middle Platreef has <FONT FACE="SYMBOL">d</FONT> 34S values averaging 4 0 /00. All three Platreef layers have elevated <FONT FACE="SYMBOL">d</FONT> 34S values, indicating addition of 34S-enriched crustal sulphur. The model of contamination is supported by elevated K, Ca, Zr and Y contents in the Platreef relative to Critical Zone rocks from elsewhere in the Bushveld Complex, and by high Zr/Y ratios. Well defined correlations between concentrations of the individual PGE, and between the PGE and S suggest that the concentration of the PGE was controlled by segregating sulphide melt. Alteration of the rocks, possibly due to infiltration by fluids derived from the floor rocks, caused localized redistribution of Cu and, to a lesser degree, the PGE. A model is proposed whereby the Platreef magma assimilated calcsilicate and hornfels from the country rocks. The hornfels and calcsilicate of the Silverton Formation that forms the floor rocks to the Platreef on the farm Townlands constitute a possible source of the crystal sulphur. Release of S from the floor rocks caused S-supersaturation in the magma, followed by segregation of an immiscible sulphide melt. The sulphide melt scavenged the PGE from the silicate magma. The sulphides and the xenoliths were entrained by successive, metal-undepleted magma flows, causing high metal tenors in the sulphides and undepleted Ni contents in associated olivine / Dissertation (MSc)--University of Pretoria, 2006. / Geology / unrestricted

Page generated in 0.1333 seconds