1 |
Generative manifold learning for the exploration of partially labeled dataCruz Barbosa, Raúl 01 October 2009 (has links)
In many real-world application problems, the availability of data labels for supervised learning is rather limited. Incompletely labeled datasets are common in many of the databases generated in some of the currently most active areas of research. It is often the case that a limited number of labeled cases is accompanied by a larger number of unlabeled ones. This is the setting for semi-supervised learning, in which unsupervised approaches assist the supervised problem and vice versa.
A manifold learning model, namely Generative Topographic Mapping (GTM), is the basis of the methods developed in this thesis. The non-linearity of the mapping that GTM generates makes it prone to trustworthiness and continuity errors that would reduce the faithfulness of the data representation, especially for datasets of convoluted geometry. In this thesis, a variant of GTM that uses a graph approximation to the geodesic metric is first defined. This model is capable of representing data of convoluted geometries. The standard GTM is here modified to prioritize neighbourhood relationships along the generated manifold. This is accomplished by penalizing the possible divergences between the Euclidean distances from the data points to the model prototypes and the corresponding geodesic distances along the manifold. The resulting Geodesic GTM (Geo-GTM) model is shown to improve the continuity and trustworthiness of the representation generated by the model, as well as to behave robustly in the presence of noise.
The thesis then leads towards the definition and development of semi-supervised versions of GTM for partially-labeled data exploration. As a first step in this direction, a two-stage clustering procedure that uses class information is presented. A class information-enriched variant of GTM, namely class-GTM, yields a first cluster description of the data. The number of clusters defined by GTM is usually large for visualization purposes and does not necessarily correspond to the overall class structure. Consequently, in a second stage, clusters are agglomerated using the K-means algorithm with different novel initialization strategies that benefit from the probabilistic definition of GTM. We evaluate if the use of class information influences cluster-wise class separability. A robust variant of GTM that detects outliers while effectively minimizing their negative impact in the clustering process is also assessed in this context.
We then proceed to the definition of a novel semi-supervised model, SS-Geo-GTM, that extends Geo-GTM to deal with semi-supervised problems. In SS-Geo-GTM, the model prototypes are linked by the nearest neighbour to the data manifold constructed by Geo-GTM. The resulting proximity graph is used as the basis for a class label propagation algorithm. The performance of SS-Geo-GTM is experimentally assessed, comparing positively with that of an Euclidean distance-based counterpart and that of the alternative Laplacian Eigenmaps method. Finally, the developed models (the two-stage clustering procedure and the semi-supervised models) are applied to the analysis of a human brain tumour dataset (obtained by Nuclear Magnetic Resonance Spectroscopy), where the tasks are, in turn, data clustering and survival prognostic modeling. / Resum de la tesi (màxim 4000 caràcters. Si se supera aquest límit, el resum es tallarà automàticament al caràcter 4000)
En muchos problemas de aplicación del mundo real, la disponibilidad de etiquetas de datos para aprendizaje supervisado es bastante limitada. La existencia de conjuntos de datos etiquetados de manera incompleta es común en muchas de las bases de datos generadas en algunas de las áreas de investigación actualmente más activas. Es frecuente que un número limitado de casos etiquetados venga acompañado de un número mucho mayor de datos no etiquetados. Éste es el contexto en el que opera el aprendizaje semi-supervisado, en el cual enfoques no-supervisados prestan ayuda a problemas supervisados y vice versa.
Un modelo de aprendizaje de variaciones (manifold learning, en inglés), llamado Mapeo Topográfico Generativo (GTM, en acrónimo de su nombre en inglés), es la base de los métodos desarrollados en esta tesis. La no-linealidad del mapeo que GTM genera hace que éste sea propenso a errores de fiabilidad y continuidad, los cuales pueden reducir la fidelidad de la representación de los datos, especialmente para conjuntos de datos de geometría intrincada. En esta tesis, una extensión de GTM que utiliza una aproximación vía grafos a la métrica geodésica es definida en primer lugar. Este modelo es capaz de representar datos con geometrías intrincadas. En él, el GTM estándar es modificado para priorizar relaciones de vecindad a lo largo de la variación generada. Esto se logra penalizando las divergencias existentes entre las distancias Euclideanas de los datos a los prototipos del modelo y las correspondientes distancias geodésicas a lo largo de la variación. Se muestra que el modelo Geo-GTM resultante mejora la continuidad y fiabilidad de la representación generada y que se comporta de manera robusta en presencia de ruido.
Más adelante, la tesis nos lleva a la definición y desarrollo de versiones semi-supervisadas de GTM para la exploración de conjuntos de datos parcialmente etiquetados. Como un primer paso en esta dirección, se presenta un procedimiento de agrupamiento en dos etapas que utiliza información de pertenencia a clase. Una extensión de GTM enriquecida con información de pertenencia a clase, llamada class-GTM, produce una primera descripción de grupos de los datos. El número de grupos definidos por GTM es normalmente grande para propósitos de visualización y no corresponde necesariamente con la estructura de clases global. Por ello, en una segunda etapa, los grupos son aglomerados usando el algoritmo K-means con diferentes estrategias de inicialización novedosas las cuales se benefician de la definición probabilística de GTM. Evaluamos si el uso de información de clase influye en la separabilidad de clase por grupos. Una extensión robusta de GTM que detecta datos atípicos a un tiempo que minimiza de forma efectiva su impacto negativo en el proceso de agrupamiento es evaluada también en este contexto.
Se procede después a la definición de un nuevo modelo semi-supervisado, SS-Geo-GTM, que extiende Geo-GTM para ocuparse de problemas semi-supervisados. En SS-Geo-GTM, los prototipos del modelo son vinculados al vecino más cercano a la variación construída por Geo-GTM. El grafo de proximidad resultante es utilizado como base para un algoritmo de propagación de etiquetas de clase. El rendimiento de SS-Geo-GTM es valorado experimentalmente, comparando positivamente tanto con la contraparte de este modelo basada en la distancia Euclideana como con el método alternativo Laplacian Eigenmaps. Finalmente, los modelos desarrollados (el procedimiento de agrupamiento en dos etapas y los modelos semi-supervisados) son aplicados al análisis de un conjunto de datos de tumores cerebrales humanos (obtenidos mediante Espectroscopia de Resonancia Magnética Nuclear), donde las tareas a realizar son el agrupamiento de datos y el modelado de pronóstico de supervivencia.
|
2 |
Procedural textures mapping using geodesic distances / Mapeamento de texturas procedurais usando distâncias geodésicasOliveira, Guilherme do Nascimento January 2011 (has links)
O mapeamento de texturas é uma técnica bastante importante para adicionar detalhamento a modelos geométricos. O mapeamento de texturas baseadas em imagens costuma ser a abordagem preferida, mas faz uso de imagens pré-computadas que são mais adequadas à representação de padrões estáticos. Por outro lado, texturas procedurais oferecem uma alternativa que depende de funções para descrever os padrões das texturas. Elas garantem mais flexibilidade na definição dos padrões em cenas dinâmicas, tendo ainda uma representação mais compacta e dando um maior controle da aparência da textura através do ajuste de parâmetros. Quando mapeadas por coordenadas 3D, as texturas procedurais não consideram a forma da superfície domodelo, e com coordenadas 2D torna-se necessária a definição dessas coordenadas de forma coerente, que, em modelos complexos ,não é uma tarefa simples. Neste trabalho nós introduzimos o leitor às texturas procedurais e ao mapeamento de texturas, então apresentamos GeoTextures, uma nova abordagem que faz uso de distâncias geodésicas definidas com base em múltiplos pontos de origem sobre a superfície do modelo. As distâncias geodésicas são passadas como parâmetros que permitem que a textura procedural se adeqüe ao relevo do modelo texturizado. Nós validamos a proposta ao usar alguns exemplos de texturas procedurais aplicadas em tempo real na texturização de superfícies complexas, mudando tanto a textura do modelo como a forma, através do uso de tesselagem em hardware. / Texture mapping is an important technique to add detail to geometric models. Imagebased texture mapping is the preferred approach but employs pre-computed images, which are better suited for static patterns. On the other hand, procedural-based texture mapping offers an alternative that rely on functions to describe texturing patterns. This allows more flexibility to define patterns in dynamic scenes, while also having a more compact representation and more control for parametric adjustments on the texture visual appearance. When mapped with 3D coordinates, the procedural textures do not consider the model surface, and with 2D mapping the coordinates must be defined in a coherent way, which for complex models is not an easy task. In this work we give a introduction to procedural texturing and texture mapping, and introduce GeoTextures, an original approach that uses geodesic distance defined from multiple sources at different locations over the surface of the model. The geodesic distance is passed as a parameter that allows the shape of the model to be considered in the definition of the procedural texture. We validate the proposal using procedural textures that are applied in real-time to complex surfaces, and show examples that change both the shading of the models, as well as their shape using hardware-based tessellation.
|
3 |
Procedural textures mapping using geodesic distances / Mapeamento de texturas procedurais usando distâncias geodésicasOliveira, Guilherme do Nascimento January 2011 (has links)
O mapeamento de texturas é uma técnica bastante importante para adicionar detalhamento a modelos geométricos. O mapeamento de texturas baseadas em imagens costuma ser a abordagem preferida, mas faz uso de imagens pré-computadas que são mais adequadas à representação de padrões estáticos. Por outro lado, texturas procedurais oferecem uma alternativa que depende de funções para descrever os padrões das texturas. Elas garantem mais flexibilidade na definição dos padrões em cenas dinâmicas, tendo ainda uma representação mais compacta e dando um maior controle da aparência da textura através do ajuste de parâmetros. Quando mapeadas por coordenadas 3D, as texturas procedurais não consideram a forma da superfície domodelo, e com coordenadas 2D torna-se necessária a definição dessas coordenadas de forma coerente, que, em modelos complexos ,não é uma tarefa simples. Neste trabalho nós introduzimos o leitor às texturas procedurais e ao mapeamento de texturas, então apresentamos GeoTextures, uma nova abordagem que faz uso de distâncias geodésicas definidas com base em múltiplos pontos de origem sobre a superfície do modelo. As distâncias geodésicas são passadas como parâmetros que permitem que a textura procedural se adeqüe ao relevo do modelo texturizado. Nós validamos a proposta ao usar alguns exemplos de texturas procedurais aplicadas em tempo real na texturização de superfícies complexas, mudando tanto a textura do modelo como a forma, através do uso de tesselagem em hardware. / Texture mapping is an important technique to add detail to geometric models. Imagebased texture mapping is the preferred approach but employs pre-computed images, which are better suited for static patterns. On the other hand, procedural-based texture mapping offers an alternative that rely on functions to describe texturing patterns. This allows more flexibility to define patterns in dynamic scenes, while also having a more compact representation and more control for parametric adjustments on the texture visual appearance. When mapped with 3D coordinates, the procedural textures do not consider the model surface, and with 2D mapping the coordinates must be defined in a coherent way, which for complex models is not an easy task. In this work we give a introduction to procedural texturing and texture mapping, and introduce GeoTextures, an original approach that uses geodesic distance defined from multiple sources at different locations over the surface of the model. The geodesic distance is passed as a parameter that allows the shape of the model to be considered in the definition of the procedural texture. We validate the proposal using procedural textures that are applied in real-time to complex surfaces, and show examples that change both the shading of the models, as well as their shape using hardware-based tessellation.
|
4 |
Procedural textures mapping using geodesic distances / Mapeamento de texturas procedurais usando distâncias geodésicasOliveira, Guilherme do Nascimento January 2011 (has links)
O mapeamento de texturas é uma técnica bastante importante para adicionar detalhamento a modelos geométricos. O mapeamento de texturas baseadas em imagens costuma ser a abordagem preferida, mas faz uso de imagens pré-computadas que são mais adequadas à representação de padrões estáticos. Por outro lado, texturas procedurais oferecem uma alternativa que depende de funções para descrever os padrões das texturas. Elas garantem mais flexibilidade na definição dos padrões em cenas dinâmicas, tendo ainda uma representação mais compacta e dando um maior controle da aparência da textura através do ajuste de parâmetros. Quando mapeadas por coordenadas 3D, as texturas procedurais não consideram a forma da superfície domodelo, e com coordenadas 2D torna-se necessária a definição dessas coordenadas de forma coerente, que, em modelos complexos ,não é uma tarefa simples. Neste trabalho nós introduzimos o leitor às texturas procedurais e ao mapeamento de texturas, então apresentamos GeoTextures, uma nova abordagem que faz uso de distâncias geodésicas definidas com base em múltiplos pontos de origem sobre a superfície do modelo. As distâncias geodésicas são passadas como parâmetros que permitem que a textura procedural se adeqüe ao relevo do modelo texturizado. Nós validamos a proposta ao usar alguns exemplos de texturas procedurais aplicadas em tempo real na texturização de superfícies complexas, mudando tanto a textura do modelo como a forma, através do uso de tesselagem em hardware. / Texture mapping is an important technique to add detail to geometric models. Imagebased texture mapping is the preferred approach but employs pre-computed images, which are better suited for static patterns. On the other hand, procedural-based texture mapping offers an alternative that rely on functions to describe texturing patterns. This allows more flexibility to define patterns in dynamic scenes, while also having a more compact representation and more control for parametric adjustments on the texture visual appearance. When mapped with 3D coordinates, the procedural textures do not consider the model surface, and with 2D mapping the coordinates must be defined in a coherent way, which for complex models is not an easy task. In this work we give a introduction to procedural texturing and texture mapping, and introduce GeoTextures, an original approach that uses geodesic distance defined from multiple sources at different locations over the surface of the model. The geodesic distance is passed as a parameter that allows the shape of the model to be considered in the definition of the procedural texture. We validate the proposal using procedural textures that are applied in real-time to complex surfaces, and show examples that change both the shading of the models, as well as their shape using hardware-based tessellation.
|
5 |
Geometric approach to multi-scale 3D gesture comparisonOchoa Mayorga, Victor Manuel 11 1900 (has links)
The present dissertation develops an invariant framework for 3D gesture comparison studies. 3D gesture comparison without Lagrangian models is challenging not only because of the lack of prediction provided by physics, but
also because of a dual geometry representation, spatial dimensionality and non-linearity associated to 3D-kinematics.
In 3D spaces, it is difficult to compare curves without an alignment operator since it is likely that discrete curves are not synchronized and do not share a common point in space. One has to assume that each and every single trajectory in the space is unique. The common answer is to assert the similitude between two or more trajectories as estimating an average distance error from the aligned curves, provided that the alignment operator is found.
In order to avoid the alignment problem, the method uses differential geometry for position and orientation curves. Differential geometry not only reduces the spatial dimensionality but also achieves view invariance. However,
the nonlinear signatures may be unbounded or singular. Yet, it is shown that pattern recognition between intrinsic signatures using correlations is robust for position and orientation alike.
A new mapping for orientation sequences is introduced in order to treat quaternion and Euclidean intrinsic signatures alike. The new mapping projects a 4D-hyper-sphere for orientations onto a 3D-Euclidean volume. The projection uses the quaternion invariant distance to map rotation sequences into 3D-Euclidean curves. However, quaternion spaces are sectional discrete spaces.
The significance is that continuous rotation functions can be only approximated for small angles. Rotation sequences with large angle variations can only be interpolated in discrete sections.
The current dissertation introduces two multi-scale approaches that improve numerical stability and bound the signal energy content of the intrinsic signatures. The first is a multilevel least squares curve fitting method similar to Haar wavelet. The second is a geodesic distance anisotropic kernel filter.
The methodology testing is carried out on 3D-gestures for obstetrics training. The study quantitatively assess the process of skill acquisition and transfer of manipulating obstetric forceps gestures. The results show that the multi-scale correlations with intrinsic signatures track and evaluate gesture differences between experts and trainees.
|
6 |
Geometric approach to multi-scale 3D gesture comparisonOchoa Mayorga, Victor Manuel Unknown Date
No description available.
|
Page generated in 0.1002 seconds