Spelling suggestions: "subject:"geological uncertainty""
1 |
Rate Optimization for Polymer and CO2 Flooding Under Geologic UncertaintySharma, Mohan 2011 August 1900 (has links)
With the depletion of the existing reservoirs and the decline in oil discoveries during the last few decades, enhanced oil recovery (EOR) methods have gained a lot of attention. Among the various improved recovery methods, waterflooding is by far the most widely used. However, the presence of reservoir heterogeneity such as high permeability streaks often leads to premature breakthrough and poor sweep resulting in reduced oil recovery. This underscores the need for a prudent reservoir management, in terms of optimal production and injection rates, to maximize recovery. The increasing deployment of smart well completions and i-field has inspired many researchers to develop algorithms to optimize the production/injection rates along intervals of smart wells. However, the application of rate control for other EOR methods has been relatively few.
This research aims to extend previous streamline-based rate optimization workflow to polymer flooding and CO2 flooding. The objective of the approach is to maximize sweep efficiency and minimize recycling of injected fluid (polymer/CO2) by delaying its breakthrough. This is achieved by equalizing the front arrival time at the producers using streamline time-of-flight. Arrival time is rescaled to allow for optimization after breakthrough of injected fluid. Additionally, we propose an accelerated production strategy to increase NPV over sweep efficiency maximization case. The optimization is performed under operational and facility constraints using a sequential quadratic programming approach. The geological uncertainty has been accounted via a stochastic optimization framework based on the combination of the expected value and variance of a performance measure from multiple realizations.
Synthetic and field examples are used extensively to demonstrate the practical feasibility and robustness of our approach for application to EOR processes.
|
2 |
[en] PROBABILISTIC EVALUATION OF PETROLEUM PROSPECTS PRIOR TO WILDCAT WELL DRILLING / [pt] AVALIAÇÃO PROBABILÍSTICA DE PROSPECTOS DE PETRÓLEO ANTES DA PERFURAÇÃO DE POÇO PIONEIROCRISTINA DE LAS NIEVES ARANEDA FUENTES 07 July 2004 (has links)
[pt] Estudos econômicos de áreas com indícios de hidrocarbonetos
estão imersos em incertezas de diferentes naturezas
(geológicas, de engenharia e econômicas). No início do
estudo, aspectos da geologia, dos fluidos, das rochas e do
reservatório só são conhecidos por métodos indiretos que
fornecem informações imprecisas. A redução dessas
incertezas é limitada pelos elevados custos de perfuração
de poços que permitam testes diretos. Conseqüentemente,
decisões de investimentos de exploração têm que ser
tomadas sob risco motivando, assim, o desenvolvimento de
métodos para a avaliação econômica probabilística de
propriedades. O foco desta dissertação é a avaliação
econômica probabilística de recursos petrolíferos, antes da
perfuração do poço pioneiro. O cálculo do valor econômico
de uma propriedade depende das estimativas dos perfis
temporais de receitas e custos associados ao seu
desenvolvimento e produção (D e P). A obtenção de tais
elementos requer um projeto de D e P para a propriedade que,
em função dos dados disponíveis, é menos detalhado do que
um projeto de simulação multicelular. Nesta dissertação,
uma metodologia de avaliação baseada em simulação de Monte
Carlo é apresentada juntamente com uma implementação-
protótipo. A realização das numerosas replicações,
necessárias para se obter uma avaliação probabilística, se
torna viável graças a um programa capaz de gerar o projeto
de D e P automaticamente. Esse programa foi desenvolvido pela
Petrobras com base em regras fornecidas por um
especialista. Além da justificativa para a abordagem
adotada, da descrição e implementação do método, são feitas
considerações sobre distribuições de probabilidade para
codificar incertezas e sobre os resultados dos testes
iniciais do sistema protótipo. / [en] Economics studies of areas with indications of hydrocarbons
are submerged in uncertainties of assorted natures
(geological, of engineering and economical). At the start
of the study, aspects concerning the geology, the fluids,
the rocks and the reservoir are only known through indirect
methods that yield imprecise information. The reduction of
these uncertainties is limited by high costs of drilling
wells that allow direct tests. Consequently, decisions on
exploration investments have to be made under risk. This
motivates the development of methods for probabilistic
economic evaluation of properties. This dissertation
addresses the probabilistic economic evaluation of
petroleum resources, prior wildcat well drilling. Assessing
the economic value of a property depends on estimates of
incomes and costs time profiles associated to its
development and production (D and P). Obtaining such elements
requires a D and P project for the property that, due to the
limited data available, is less detailed than a multi-
cellular simulation project. In this thesis, a probabilistic
evaluation methodology based on Monte Carlo simulation is
presented along with a prototype implementation. Performing
the numerous replications necessary to obtain a
probabilistic evaluation becomes feasible thanks to a
procedure capable of automatically generating the D and P
project. That procedure was developed by Petrobras based on
heuristic rules supplied by an expert. In addition to a
justification for the proposed approach, the description
of the method and its implementation, comments are made on
probability density functions used for encoding
uncertainties, and on the results of the initial tests with
the prototype system.
|
3 |
Optimal Waterflood Management under Geologic Uncertainty Using Rate Control: Theory and Field ApplicationsAlhuthali, Ahmed Humaid H. 16 January 2010 (has links)
Waterflood optimization via rate control is receiving increased interest because
of rapid developments in the smart well completions and I-field technology. The use of
inflow control valves (ICV) allows us to optimize the production/injection rates of
various segments along the wellbore, thereby maximizing sweep efficiency and delaying
water breakthrough. It is well recognized that field scale rate optimization problems are
difficult because they often involve highly complex reservoir models, production and
facilities related constraints and a large number of unknowns. Some aspects of the
optimization problem have been studied before using mainly optimal control theory.
However, the applications to-date have been limited to rather small problems because of
the computation time and the complexities associated with the formulation and solution
of adjoint equations. Field-scale rate optimization for maximizing waterflood sweep
efficiency under realistic field conditions has still remained largely unexplored.
We propose a practical and efficient approach for computing optimal injection
and production rates and thereby manage the waterflood front to maximize sweep
efficiency and delay the arrival time to minimize water cycling. Our work relies on
equalizing the arrival times of the waterfront at all producers within selected sub-regions
of a water flood project. The arrival time optimization has favorable quasi-linear
properties and the optimization proceeds smoothly even if our initial conditions are far
from the solution. We account for geologic uncertainty using two optimization schemes.
The first one is to formulate the objective function in a stochastic form which relies on a
combination of expected value and standard deviation combined with a risk attitude coefficient. The second one is to minimize the worst case scenario using a min-max
problem formulation. The optimization is performed under operational and facility
constraints using a sequential quadratic programming approach. A major advantage of
our approach is the analytical computation of the gradient and Hessian of the objective
which makes it computationally efficient and suitable for large field cases.
Multiple examples are presented to support the robustness and efficiency of the
proposed optimization scheme. These include several 2D synthetic examples for
validation purposes and 3D field applications.
|
4 |
[en] APPROXIMATORS OF OIL RESERVOIR SIMULATORS BY GENETIC PROGRAMMING AND APPLICATION IN PRODUCTION OPTIMIZATION ALTERNATIVES / [pt] APROXIMADORES DE SIMULADORES DE RESERVATÓRIO DE PETRÓLEO POR PROGRAMAÇÃO GENÉTICA E APLICAÇÃO NA OTIMIZAÇÃO DE ALTERNATIVAS DE PRODUÇÃOGUILHERME CESARIO STRACHAN 22 June 2015 (has links)
[pt] A definição da estratégia de produção de petróleo é uma tarefa muito importante que consiste em um processo bastante complexo devido à grande quantidade de variáveis envolvidas. Estas variáveis estão relacionadas com características geológicas, fatores econômicos e decisões como alocação de poços, número de poços produtores e injetores, condições operacionais e cronograma de abertura de poços. No contexto da otimização da produção de petróleo, o objetivo é encontrar a melhor configuração de poços que contribua para maximizar, na maioria dos casos, o valor presente líquido (VPL). Esse valor é calculado, principalmente, a partir do óleo, gás e água produzidos do campo, que são encontrados através do uso do simulador de reservatórios. Porém, vários parâmetros e variáveis devem ser prefixados e inseridos no sistema de simulação para que esses valores de produção sejam previstos. Esse processo geralmente exige um alto custo computacional para modelar as transferências de fluidos dentro do reservatório simulado. Assim, o uso de simuladores pode ser substituído por aproximadores. Neste estudo, eles são desenvolvidos através da Programação Genética Linear com Inspiração Quântica, uma técnica da Computação Evolucionária. Esses aproximadores serão utilizados para substituir a simulação do reservatório no processo de otimização da localização e tipo de poços a serem perfurados em um campo petrolífero. Para a construção dos proxies de reservatório, as amostras, originadas utilizando a técnica do Hipercubo Latino, foram simuladas para a criação da base de dados. O modelo para criação de aproximadores foi testado em um reservatório sintético. Dois tipos de otimização foram realizados para a validação do modelo. A primeira foi a otimização determinística e a segunda uma otimização sob incerteza considerando três diferentes cenários geológicos, um caso onde o número de simulações é
extremamente alto. Os resultados encontrados apontam que o modelo para a criação de proxies consegue bom desempenho na substituição dos simuladores devido aos baixos erros encontrados e na considerável redução do custo computacional. / [en] The purpose of oil production strategy in the context of production optimization is to find the best configuration of wells that contributes to maximizing the Net Present Value. This value is calculated mainly from the amount of oil, gas, and water recovered from the field, which can be obtained by running the reservoir simulator. However, many parameters and variables must be prefixed and inserted into the simulation system in order to generate these production values. This process involves a high computational cost for modeling the transfer of fluids within the simulated reservoir. Thus, the use of simulators may be substituted by approximators. In this thesis, we aim to develop these approximators using Quantum-Inspired Linear Genetic Programming, a technique of Evolutionary Computation. These approximators were used to replace the reservoir simulation in the process of optimizing the location and type of wells to be drilled in a field. For the reservoir proxies construction, samples obtained from the technique of Latin Hypercube were simulated to create the database. The model for creating approximators was tested on a synthetic reservoir. Two types of optimization were performed to validate the model. The first was a deterministic optimization and the second an optimization under uncertainty considering three different geological settings, a situation in which the number of simulations becomes extremely high. Our results indicated that the model for the creation of proxies achieves a satisfactory performance in the replacement of simulators due to low levels of errors and a considerable reduction of the computational cost.
|
Page generated in 0.0748 seconds