• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 182
  • 95
  • 47
  • 31
  • 18
  • 9
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 433
  • 72
  • 52
  • 51
  • 41
  • 39
  • 39
  • 37
  • 35
  • 35
  • 30
  • 30
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Magnetic and dielectric behavior of the quasi-two-dimensional triangular antiferro-magnet NiGa2S4+£_

Hsiao, Kai-wen 29 December 2011 (has links)
Spin systems with low dimensionality and geometrical frustration have attracted interest because of the possible emergence of novel magnetic phases at low temperatures by suppressing conventional magnetic order, and allow for a novel spin-disordered ground state, such as quantum spin liquid and glass without any apparent structural disorder. In this thesis, we have discussed magnetic and dielectric measurements on the quasi-two-dimensional triangular antiferromagnet NiGa2S3.85, in order to investigate its magnetic state and dielectric property at low temperatures. In the measurement of susceptibility In the measurement of susceptibility £q(T), we found that the freezing temperature is near 6 K. This suggests that the sample with the sulfur deficiency should be close to the stoichiometric NiGa2S3.85. Under 7 T magnetic filed ZFC(zero-field-cooling) and FC(field-cooling) still bifurcate indicating more magnetic order state than spin-liquid. Temperature-dependent dielectric measurement shows an interesting colossal enhancement of dielectric constant with frequency dispersion and is ascribed to the interfacial polarization (termed as Maxwell-Wagner relaxation) at the interface between adjacent layers. Temperature-dependent dielectric measurement under applied magnetic field (up to 9 T) shows negligible magnetodielectric behavior because of the sample is not magneto resistive.
142

Cutting Strategies For Forging Die Manufacturing On Cnc Milling Machines

Ozgen, Arda 01 March 2008 (has links) (PDF)
Manufacturing of dies has been presenting greater requirements of geometrical accuracy, dimensional precision and surface quality as well as decrease in costs and manufacturing times. Although proper cutting parameter values are utilized to obtain high geometrical accuracy and surface quality, there may exist geometrical discrepancy between the designed and the manufactured surface profile of the die cavities. In milling process / cutting speed, step over and feed are the main cutting parameters and these parameters affect geometrical accuracy and surface quality of the forging die cavities. In this study, effects of the cutting parameters on geometrical error have been examined on a representative die cavity profile. To remove undesired volume in the die cavities, available cutting strategies are investigated. Feed rate optimization is performed to maintain the constant metal removal rate along the trajectory of the milling cutter during rough cutting process. In the finish cutting process of the die cavities, Design of Experiment Method has been employed to find out the effects of the cutting parameters on the geometrical accuracy of the manufactured cavity profile. Prediction formula is derived to estimate the geometrical error value in terms of the values of the cutting parameters. Validity of the prediction formula has been tested by conducting verification experiments for the representative die geometry and die cavity geometry of a forging part used in industry. Good agreement between the predicted error values and the measured error values has been observed.
143

Investigation Of Electromagnetic Wave Propagation In Double Negative Materials

Sen, Saffet Gokcen 01 July 2008 (has links) (PDF)
This thesis analyzes some aspects of electromagnetic wave propagation in double negative materials. Double negative materials have negative refractive indices. They are backward-wave materials. Plane waves undergo negative refraction at interfaces between double positive and double negative media. Causality principle implies these properties. High frequency plane wave scattering from a double negative infinitely long cylinder has been analyzed by using modified Watson transform, geometrical optics and Mie series. Mie series results and the modified Watson transform results have been found to be in good agreement. Hence, the physical mechanism of the scattering has been revealed.
144

Geometrical Phases And Magnetic Monopoles

Deger, Sinan 01 February 2011 (has links) (PDF)
In this thesis, we study the subject of geometrical phases in detail by considering its various forms. We focus primarily on the relation between quantum geometrical phases and magnetic monopoles, and study how one can make use of the concepts of geometrical phases to define magnetic monopoles.
145

Windback seal design for gas compressors: a numerical and experimental study

Al-Ghasem, Adnan Mahmoud 17 September 2007 (has links)
Seals are considered one of the important flow elements of a turbomachinery device. Traditional labyrinth seals have proven their performance functionality by reducing leakage rates. Significant improvements on labyrinth seal functionality were obtained through altering the design geometry of labyrinth seals to prevent contamination across a seal and maintaining small leakage flowrates. This results in a windback seal that has only one tooth which continuously winds around the shaft like a screw thread. These seals are used in gas compressors to isolate the gas face seal from bearing oil. A purge gas is passed through the seal into the bearing housing. The helical design allows the seal to clear itself of any oil contamination. Windback seal performance is controlled through changing the seal geometry. A 2D graphical design tool for calculating the total and cavity leakage flowrates for windback seals is introduced. The effectiveness of the Fluent CFD (Computational Fluid Dynamics) commercial code to accurately predict the leakage rate for windback seals was evaluated. The objective is to determine if CFD simulations can be used along with a few experimental tests to study windback seals of this design with air as the working fluid. Comparison of measurement and predictions for a windback seal using the κ-ε turbulence model with enhanced wall treatment functions show predictions and measurements comparing very well with a maximum difference of 5% for leakage rate. Similarly, the leakage rate of the tested smooth seal compares favorably with two dimensional CFD predictions, with a difference of 2%-11% and 8%-15% using laminar and κ-ε turbulent flow models, respectively. The variation of leakage with shaft speed and pressure ratio across the seals is accurately predicted by the CFD simulations. Increasing the rotor speed to 15000 rpm increases the measured leakage flowrate for the windback seal by 2% at high differential pressure and 4.5% at low differential pressure, and decreases it by 10 % for the smooth seal. The effects of seal clearance, tooth pitch, cavity depth and the tooth number of starts on leakage flowrate, velocity and pressure distributions were studied numerically for three differential pressures and four rotor speeds.
146

Recherches sur la reflexion cristalline

Cornu, Alfred January 1900 (has links)
Thesis (doctoral)--Université de Paris, 1867. Thèse de doctorat : Physique : Paris, Faculté des sciences : 1867. / "No. d'ordre: 293" Titre provenant de l'écran-titre. Références bibliogr.
147

Channel modeling of an antenna plasma-plume system

Zuniga Barahona, Christian David 28 August 2008 (has links)
Not available / text
148

A volumetric sculpting based approach for modeling multi-scale domains

Karlapalem, Lalit Chandra Sekhar 28 August 2008 (has links)
Not available / text
149

Rapid modeling of LWD nuclear measurements acquired in high-angle and horizontal wells for improved petrophysical and geometrical interpretation

Ijasan, Olabode 17 February 2011 (has links)
Nuclear logging-while-drilling (LWD) measurements acquired in high-angle and horizontal (HA/HZ) wells are influenced by tool, geometrical, and petrophysical effects. Reliable interpretation of petrophysical and geometrical properties from LWD measurements acquired in thinly-bedded formations requires that gamma ray, density, photoelectric (PEF), and neutron measurements be quantitatively integrated with explicit consideration of their effective volume of investigation (EVOI). One of the effects of different tool EVOIs is false gas density-neutron crossovers across thinly-bedded formations. Also, in the presence of tool eccentricity, azimuthally-varying standoff gives rise to an azimuthally-varying effective depth of investigation (EDOI), which introduces errors in the inference of formation dip. Conventional Monte Carlo simulations of nuclear measurements are computationally expensive in reproducing multi-sector LWD responses in HA/HZ wells. Using linear iterative refinement of pre-calculated flux sensitivity functions (FSFs), we introduce a fast method for numerical simulation of LWD nuclear images in the presence of tool eccentricity along any well trajectory. Our investigation of measurement responses from FSFs motivates techniques to explicitly consider the EVOI of LWD nuclear measurements. Simple radial DOI and standoff corrections suffice for interpretation of gamma-gamma images but are inadequate for neutron responses due to larger EVOI and azimuthal aperture. We introduce a new azimuthal deconvolution method of neutron images to improve bed-boundary detection. Neutron DOI varies significantly with porosity, whereby we correct neutron images for penetration length due to changes of porosity along the well trajectory. In addition, we implement a new method of separate linear iterative refinement on neutron thermal group responses to improve the resolution of neutron images across heterogeneous and thinly-bedded formations. The method reduces shoulder-bed effects and false neutron-density gas crossovers. We corroborate these techniques with rigorous Monte Carlo simulations in vertical and deviated wells. A field example of application conclusively indicates that numerical simulation of LWD nuclear measurements is necessary for reliable estimation of petrophysical properties. / text
150

The use of geometer's sketchpad to facilitate new learning experience in geometry

Yeung, Lee-hung, Albert., 楊利雄. January 2003 (has links)
published_or_final_version / abstract / toc / Education / Master / Master of Science in Information Technology in Education

Page generated in 0.0504 seconds