• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 6
  • 4
  • Tagged with
  • 31
  • 15
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Actualización de los Antecedentes Geoquímicos y Geofísicos del Campo Geotérmico de Puchuldiza y su Comparación con el Área de Exploración Geotérmica de Guanacota, Región de Tarapacá

Montenegro Ampuero, César Alejandro January 2008 (has links)
No description available.
2

Análisis de la energía geotérmica de baja temperatura en terrenos volcánicos. Aplicaciones a la construcción en Tenerife

Expósito Martín, María del Cristo 18 December 2015 (has links)
La energía geotérmica constituye una fuente inagotable de energía que puede ser extraída de la tierra por medio de bombeo de fluidos calentados en su interior, aprovechando su gran inercia térmica. Este intercambio de calor se realiza para proyectos geotérmicos de baja entalpía en pozos de energía o bien por medio del uso de aguas subterráneas. Para hacer uso del calor extraído es necesario integrar el sistema con una bomba de calor, que actuará como intermediaria entre el sistema de intercambio de calor o colector y sistema de distribución interno de la vivienda, aportando el complemento de energía necesario para acondicionar térmicamente el hogar. Este estudio consiste en el análisis y evaluación técnica, económica y legal de varias instalaciones geotérmicas de baja entalpía que se encuentran en funcionamiento, utilizadas para climatización de piscinas y aire acondicionado, en edificios dedicados al sector servicios como Hoteles, Centros Comerciales; y en un estudio de viabilidad en una Bodega en la que se propone la utilización de la energía geotérmica para la producción de frío y calor tanto para la obtención de vino como para la climatización y ACS en zonas varias. Los estudios se han realizado en la Isla de Lanzarote en lugar de la Isla de Tenerife ya que es donde podemos encontrar un mayor número de instalaciones de este tipo. No tenemos conocimiento de instalaciones de geotermia somera en la Isla de Tenerife, aunque vemos que es factible su utilización. La investigación incluye el seguimiento de varias instalaciones geotérmicas de baja temperatura mediante pozos que se encuentran en funcionamiento desde hace algunos años. Se llega a la conclusión de que técnicamente los sistemas geotérmicos de baja entalpía utilizados son factibles y permiten reducir costos. Los sistemas que utilizan aguas subterráneas, sistemas geotérmicos abiertos, presentan ventajas frente a los sistemas geotérmicos cerrados verticales, por tener costos iniciales que generalmente suelen ser menores. En España no existe ninguna Ley de Geotermia que regularice el uso del recurso geotérmico otorgando concesiones de exploración y explotación. La regulación en el caso de utilizar aguas subterráneas la tenemos en el Consejo Regulador de Aguas.
3

Desarrollo de un Plan de Negocios: Empresa de Climatización Geotérmica Habitacional

Rondón Castillo, Roberto January 2007 (has links)
No description available.
4

Modelación numérica, diseño, construcción y análisis experimental del desempeño de un motor Stirling de baja entalpía

Sánchez Lizama, José Ignacio January 2012 (has links)
Magíster en Ciencias de la Ingeniería, Mención Mecácnica / Ingeniero Civil Mecánico / En la línea de la generación energética en Chile, existe un gran potencial aprovechable de energías renovables. De estos potenciales destaca la existencia fuentes geotérmicas de baja entalpía, donde el uso de motores Stirling resulta atractivo por su versatilidad y autonomía. Sin embargo, actualmente son escasos las trabajos de motores Stirling que aprovechen fuentes de baja entalpía. Asimismo, el uso de fluidos de trabajo distintos al aire con estos gradientes o referidos a fuentes geotérmicas es aún menor. El presente trabajo tiene como objetivo el diseño, tanto termodinámico como mecánico, construcción y posterior análisis experimental de un prototipo de motor Stirling de baja entalpía que aporte con nueva información respecto al uso de bajos gradientes térmicos con fluidos de trabajo como aire y helio. Se confeccionó una plataforma numérica, con la que se realizó la modelación y posterior optimización de un prototipo de motor Stirling en función de parámetros dimensionales representativos. Con el modelo numérico, se procedió al diseño mecánico y construcción del prototipo. En paralelo, se conformó un banco de pruebas para medir parámetros de desempeño, tales como presión, temperaturas, torque, rpm y potencia. Con el banco de pruebas se obtuvieron las curvas de potencia y torque con uso de aire y para una temperatura de la sección caliente de 220 C, 280 C y 310 C donde se obtuvieron potencias máximas de 0.4, 0.9 y 1.46 Watts respectivamente y para el caso de helio se utilizaron temperaturas de la sección caliente de 170 C, 238 C y 287 C que llevaron a potencias máximas de 0.87, 2.41 y 2.76 Watts respectivamente. También se realizó un balance de energía por medio del diagrama indicador para aire a 310 C y helio a 170 C. Por último, se contrastaron los resultados experimentales con la modelación numérica del prototipo. Con los resultados experimentales se comprobaron las tendencias de desempeño del prototipo respecto al modelo numérico para distintos gradientes térmicos, y también para el uso de aire y helio como fluidos de trabajo. Por otro lado, las pérdidas conductivas no ponderadas por la carcasa del prototipo real mermaron la eficiencia térmica global y provocaron la falta de ajuste con el modelo numérico. Se ha contribuido también al conocimiento de motores Stirling de baja entalpía, por medio de la metodología de análisis, y la experiencia relativa a la construcción, toma de datos y estudio práctico del funcionamiento del motor. Entregando con este trabajo un referente y una base para futuros trabajos experimentales en prototipos de motores Stirling de baja entalpía.
5

Hidrogeoquímica de fuentes termales en ambientes salinos relacionados con salares en los Andes del Norte de Chile

Lagos Durán, Laura Valentina January 2016 (has links)
Magíster en Ciencias, Mención Geología. Geóloga / En un contexto en que los métodos de exploración de recursos geotérmicos tienen que ser cada vez más eficientes, una comprensión más clara de los factores que controlan la localización y naturaleza de los reservorios de alta entalpía en los Andes chilenos es un requisito clave. Debido a esto, se hace necesario utilizar herramientas geoquímicas especializadas, en particular para agua geotermal con influencia de lago salino, y así establecer modelos que discriminen entre entradas de solución salina de superficie respecto a potenciales signaturas químicas e isotópicas relacionadas con la presencia de reservorios geotermales profundos. A la fecha, sólo un número muy limitado de estudios han reportado concentraciones de elementos traza e isótopos de B, Li y Sr en aguas de salares en el norte de Chile, todos ellos destinados a diferenciar las contribuciones relativas de reservorios y salmueras superficiales en los manantiales termales en borde de lagunas y salares. Sobre esta base, el objetivo principal de este trabajo es definir dichas señales químicas e isotópicas de las diferentes fuentes que aportan iones a las aguas termales al Salar de Surire y a la Laguna Tuyajto en el Altiplano de la I y II región, Chile. Así, se pretende identificar la naturaleza y extensión de procesos de mezcla entre los miembros extremos evaporíticos y geotermales, para finalmente cuantificar el aporte de iones en aguas termales de ambientes salinos según su fuente. Los objetivos propuestos fueron alcanzados mediante el estudio de un set de muestras de agua subterránea y superficial, depósitos evaporíticos, de sinter y volcánicos, y un experimento de disolución de sales. Se analizaron las razones isotópicas de 87Sr/86Sr para estudiar las fuentes de los iones en las aguas, y las concentraciones de elementos mayores, traza e isotopos estables de Li (δ7Li) y B (δ11B) para entender las fuentes y los alcances de los procesos hidrogeoquímicos que afectan las aguas geotermales. Las concentraciones de magnesio en aguas termales (~19,7 mg/L en Polloquere; 59 mg/L en Tuyajto) están significativamente empobrecidas en relación con las aguas de lagos salinos (~685,2 mg/L en Polloquere; 7457 mg/L en Tuyajto). La concentración total de Sr en aguas termales es baja (Sr=3,7 mg/L, 87Sr/86Sr=0,706244 en Polloquere; Sr=2,7 mg/L, 87Sr/86Sr=0,707385 en Tuyajto) mientras que para aguas salinas ésta es alta (Sr=31 mg/L; 87Sr/86Sr=0,706314 en Polloquere; Sr=41mg/L, 87Sr/86Sr=0,70823 en Tuyajto). Las concentraciones y datos isotópicos de Li y B en Polloquere son Li=139 mg/L, δ7Li=5,37, B=795 mg/L, δ11B=10,6 para aguas de lagos salinos y Li=12,2 mg/L, δ7Li=2,96, B=73 mg/L, δ11B=5,09 para aguas termales. Mientras que en Tuyajto son Li=58,9 mg/L, δ7Li=6,66, B=910 mg/L, δ11B=3,91 para aguas de lagos salinos y Li=0,68 mg/L, δ7Li=4,24, B=3,2 mg/L, δ11B=-0,41 para aguas termales Los datos experimentales de disolución de minerales evaporíticos (por ejemplo, ulexita, halita, yeso) muestran que la concentración total de Cl (~3242 mg/L) y razones Br/Cl, (~6,5 10-4) de las aguas experimentales resultantes son similares a las composiciones medidas para las aguas termales (Cl=~1953, Br/Cl=~7,5 10-4). A partir de los resultados obtenidos, se propone un modelo en donde el agua adquiere la signatura isotópica de Sr Li y B de las rocas volcánicas presentes en las cuencas. La meteorización incentiva la captación de 6Li y 10B en arcillas. Mientras que las condiciones áridas superficiales, por un lado, gatillan la evaporación de las salmueras de lago, favoreciendo la incorporación del isotopo más liviano (10B) en la fase vapor, y, por otro lado, estimulan la precipitación de minerales evaporíticos, entre ellos boratos, que captan 10B en la forma tetrahedral. La precipitación y disolución minerales evaporíticos induce cambios en la signatura isotópica, tanto en los minerales cristalizados como en la salmuera residual, haciendo factible la identificación de aportes de solutos provenientes de los depósitos evaporíticos superficiales o de salmueras de lago en las aguas subterráneas (participación de salmueras en aguas subterráneas de Surire entre 5,8 y 53%; en Tuyajto entre 0,73 y 30%). Dado que δ7Li junto con δ11B entregan evidencias de fraccionamiento estimulado por captación de 7Li y 10B en arcillas y boratos, la signatura del posible equilibrio termodinámico que ocurre en profundidad, en los reservorios geotermales, se pierde. Los valores isotópicos de estroncio en las aguas y depósitos evaporíticos, reflejan las razones isotópicas de rocas y depósitos volcánicos continentales. La precipitación de minerales de alteración geotermal en profundidad y durante el ascenso (e.g. calcita, evidenciado por aumento de F acompañado de la disminución de Ca en aguas termales; arcillas, evidenciado por razones Mg/Cl), y procesos de intercambio iónico (e.g. captación de K en arcillas, evidenciado por razones K/Cl), caracterizan la química de las aguas termales salinas. En este estudio fueron aportados antecedentes de utilidad en la exploración de recursos geotermales asociados a lagos salinos en el Altiplano de Chile. La detección química de la señal salina superficial en las aguas subterráneas es compleja y su detección debe considerar diversos aspectos (química de cationes, aniones y trazas). Datos isotópicos inéditos de Li B y Sr entregan información sobre la génesis de las fuentes termales salinas, al identificar los procesos que las afectan durante su línea de flujo y al cuantificar su interacción el ambiente salino superficial.
6

Aguas subterráneas en San Fernando y Pichidegua: Análisis orientado al uso directo de la geotermia

Tondreau Moraga, Jasson Hugo Andrés January 2018 (has links)
Memoria para optar al título de Geólogo / Las ciudades de San Fernando y Pichidegua se encuentran en la Depresión Central, en los 34,5°S aproximadamente. Las zonas de estudio presentan intensa actividad agrícola, que se sustenta por medio de las aguas subterráneas aprovechadas mediante pozos. La presencia de agua y de perforaciones son las que han llevado a la realización de esta memoria cuyo objetivo general es analizar en detalle los acuíferos para evaluar el potencial geotérmico asociado a estas aguas subterráneas. La idea es proporcionar datos y, mostrar potenciales aplicaciones que contribuyan a la difusión del uso directo de la geotermia en las áreas estudiadas. En las zonas de estudio no existe una caracterización de detalle de este recurso, por lo tanto, después de recopilar antecedentes geológicos e hidrogeológicos se realizaron terrenos para medir la temperatura y la conductividad eléctrica del agua subterránea (logs verticales) en pozos disponibles y, la resistividad eléctrica de los sedimentos con técnicas geofísicas (TEM y ERT). A partir del análisis de los perfiles de temperatura medidos, se define un acuífero detrítico cuya influencia externa no desaparece a los 10-15 m como es usual, sino que se observan comportamientos de pozos en los que las temperaturas medidas en invierno y verano se mantienen diferentes a los 40 m indicando que el comportamiento del acuífero es muy variable. Esto se puede relacionar a que los primeros 40 m del acuífero, en ambas zonas de estudio, están sujetos a posibles procesos de recarga durante todo el año. A partir de aproximadamente 5 m de profundidad, la temperatura del acuífero es superior a los 17°C en Pichidegua y superior a los 16°C en San Fernando. Usando estos valores de temperatura y, los caudales otorgados por la DGA, se ha estimado una energía extraíble del acuífero de 279,1 kW, con lo que se puede suplir la potencia energética demandada de 6,5 invernaderos de 150 m² de tomates y 10 invernaderos de lechugas, con las mismas dimensiones. El número de viviendas tipología T2 (peor caso) cuya demanda es factible suplir en Rengo (cercanías de Pichidegua) es de 9,8, mientras que en San Fernando es de 10,6. Con respecto a las viviendas más comunes, se obtuvo que en Rengo-Pichidegua se puede suplir la demanda de 129,2 viviendas T5, y 206,7 viviendas T8 en San Fernando.
7

Rol de las Distintas Fuentes de Calor en las Aguas Termales del Área Villarrica-Chihuio, 40°15’S y 39°15’S, Zona Volcánica Sur, Chile

Sánchez Alfaro, Pablo January 2010 (has links)
El área Villarrica-Chihuio situada entre las coordenadas 40°15’ y 39°15’ de latitud sur y los 72°10’ y 71°40’ de la longitud oeste, en las regiones de La Araucanía y de Los Ríos, tiene el ~6% de las fuentes termales en Chile. En este sector existe una estrecha relación espacial entre la distribución de los volcanes activos de la Zona Volcánica Sur y la Zona de Falla Liquiñe-Ofqui (ZFLO), los cuales determinan los principales controles de los sistemas geotermales en el área, la fuente de calor y la permeabilidad. El objetivo del trabajo es establecer el origen de las aguas termales e identificar el rol de las distintas fuentes de calor, mediante una caracterización geoquímica de las aguas termales y una caracterización estructural de las áreas de surgencia de las fuentes termales. Se seleccionaron once áreas termales y en función sus características se definieron dos dominios geotérmicos, a) Dominio Volcánico, asociado espacialmente al volcanismo reciente y b) Dominio Estructural, espacialmente asociado a la ZFLO. La caracterización estructural de las áreas termales, consistió en el mapeo y análisis de rasgos lineales superficiales –lineamientos-, mediante la utilización de imágenes satelitales y modelos digitales de elevación. Se calculó el parámetro Densidad de Fracturas y Fallas (DFF) a partir de la densidad de lineamientos y se obtuvo una correlación entre zonas con alta DFF y la existencia de fuentes termales. El análisis de orientación de lineamientos muestra una compatibilidad entre estos y el estado de estrés neógeno. Estos rasgos tectónicos controlarían la ubicación de las fuentes termales, la recarga y las direcciones de flujo en los sistemas geotérmicos. La caracterización geoquímica reveló que todas las aguas analizadas son sulfatadas-sódicas-(bicarbonatadas), con bajo contenido de sólidos disueltos y de cloro. El rango de temperatura superficial en el Dominio Estructural corresponde a 37-82°C, mientras que para el pH el rango es 8,9-9,7. En el Dominio Volcánico se tienen valores de temperatura entre 36°C y 70°C y de pH entre 7,8 y 8,7. Las aguas analizadas de ambos dominios corresponden a vapor calentadas. El rango de temperatura de reservorio en el Dominio Volcánico es de 125-150°C y en el Dominio Estructural es de 100-120°C. Los análisis de isótopos estables (D-18O) revelan que las aguas de ambos dominios tienen un origen puramente meteórico y no se ha producido intercambio isotópico de suficiente magnitud para ser apreciado en los diagramas isotópicos. Se presenta un modelo conceptual de los sistemas geotérmicos. El Dominio Volcánico tiene las características de un sistema geotérmico asociado fuente magmática, desde donde emergen aguas vapor calentadas. Las fuentes termales del Dominio Estructural serían el resultado de la circulación profunda (2-3 km) de aguas meteóricas en zonas de fracturas y fallas asociadas a la ZFLO y de alto flujo de calor. La química de las aguas termales de este dominio se explicaría por la interacción de los fluidos termales con rocas cristalinas. Los antecedentes proporcionados en este estudio indican que es posible el aprovechamiento del recurso geotérmico tanto para fines eléctricos como para usos directos.
8

Actividad Hidrotermal Asociada a los Complejos Volcánicos Planchón-Peteroa y Descabezado Grande-Quizapu-Cerro Azul, 35°s y 36ºs, Zona Volcánica Sur, Chile

Benavente Zolezzi, Oscar Matías January 2010 (has links)
El Complejo de Caldera Calabozos (CCC) y los Complejos Volcánicos Planchón-Peteroa (CVPP) y Descabezado Grande-Quizapu-Azul (CVDGQA), ubicados entre los 35-36º de latitud sur, Región del Maule, Chile; pertenecen al arco volcánico de la zona volcánica sur transicional, que corresponde a una franja de 300 km (34,4-37ºS) en donde el arco alcanza un ancho de 150 km y la corteza tiene un ancho de 35-40 km. El control espacial de los CVPP-CVDGQA-CCC y del sistema hidrotermal asociado, está determinado por estructuras NW-SE y NE-SW que tienen su desarrollo a lo largo de la faja plegada y corrida de Malargue (FPCM). La FPCM tiene un comportamiento predominante de piel gruesa en esta zona, caracterizado por una serie de bloques de basamento que limitan zonas internas de deformación de piel delgada. Así los CVPP y CVDGQA se disponen sobre fallas inversas de orientación NE-SO, desarrolladas en el contacto de las unidades Meso-Cenozoicas, mientras que el CCC aprovecha tanto las estructuras NE-SO, como las NO-SE para su emplazamiento. Estudios previos del sistema hidrotermal asociado al CCC relacionan las manifestaciones termales (manantiales calientes y fumarolas) a fallas asociadas al colapso y resurgencia de la caldera, pudiendo diferenciarse química y espacialmente dos grupos de manantiales calientes: (i) asociados a la traza del actual arco, y (ii) asociados a los márgenes de la caldera. Para ambos grupos la máxima temperatura estimada para el reservorio es de 250ºC según el geotermómetro de cuarzo y el diagrama cloro-entalpía. En este trabajo se amplió el área de estudio considerada por los autores anteriores con el objetivo de estudiar el aporte de los CVPP y CVDGQA al sistema hidrotermal asociado a la CCC basado en la información superficial geológica, estructural y de la geoquímica de aguas. Para ello se realizaron campañas de terreno donde se recolectaron 26 muestras de aguas, tanto de manantiales calientes, como de aguas meteóricas para el análisis geoquímico de cationes, aniones e isótopos estables de oxígeno y deuterio. Los resultados obtenidos muestran que: (i) El origen de las aguas termales está dada por la circulación somera y profunda de aguas meteóricas debido a la razón δ2H/δ18O, donde estas son calentadas por cámaras magmáticas someras (4 km). (ii) El origen de los componentes disueltos en las aguas es determinado principalmente por la interacción agua-roca debido a que las razones molares de elementos disueltos en las aguas muestran tendencias de disolución de los minerales de la zona (i.e. yeso, calcita, dolomita y feldespatos). A pesar de esto las muestras que están cercanas a manifestaciones del tipo fumarolas presentan concentraciones anómalas de SO4 y CO2 que se alejan de la tendencia de disolución. (iii) Las temperaturas estimadas por los geotermómetros de calcedonia y cuarzo y las estimadas por el equilibrio multimineral muestran un equilibrio general de las aguas a una temperatura variable entre 100 y 180ºC, en cambio los geotermómetros de menor cinética de reacción, como el de Na-K-Ca, estiman temperaturas de hasta 353ºC. Debido a las diferentes temperaturas estimadas por los geotermómetros es posible plantear la existencia de dos reservorios. El reservorio más profundo estaría emplazado en las rocas pertenecientes al Grupo Cuyo y/o a la Fm. Lotena, donde los fluidos alcanzarían una temperatura de al menos 353ºC. Desde estas rocas las aguas ascenderían por las zonas de fallas asociadas a la FPCM, mezclándose con aguas meteóricas durante su ascenso y reequilibrándose a las temperaturas estimadas por el geotermómetro de sílice y por el equilibrio multimineral. Así en los sectores donde las zonas de fallas de la FPCM afloran en superficie, es posible encontrar manifestaciones termales con evidencias de equilibrio con el reservorio más profundo. Mientras que en los sectores donde las trazas de la fallas de la FPCM están cubiertas por rocas volcánicas impermeables, por lo que las aguas ascenderían hasta este nivel, para luego transitar lateralmente hasta encontrar alguna zona permeable por donde emanar en los valles. El movimiento lateral de los fluidos ocurriría en las rocas de la Fm. Vega Negra correspondiente al reservorio más somero, donde las aguas termales serían calentadas conductivamente generando anomalías termales negativas superficiales, y estas tendrían tiempo suficiente para equilibrarse borrando toda huella de haber residido en el reservorio más profundo. De esta manera el sistema hidrotermal asociado al CCC, y a los CVPP y CVDGQA se explica debido a la percolación de agua meteórica que es calentada mediante procesos de transferencia de masa y energía desde las cámaras magmáticas, y debido al consecuente disminución de densidad de los fluidos hidrotermales, estos ascenderían por las zonas permeables dadas por las fallas de la FPCM, donde se enfriarían de manera conductiva y adiabática. Así, a pesar del control litológico en la química de los fluidos, los aniones principales como SO4, HCO3 y Cl se distribuyen de la misma manera que los sistemas geotermales ígneos, donde en la zona del upflow se encuentran las aguas sulfato-ácidas; en las zonas periféricas las aguas cloruradas; y entre estas zonas las aguas bicarbonatadas.
9

Perfeccionamiento del equipo Thermal Response Test y estudios de rendimientos térmicos para el diseño de un sistema geotérmico de baja entalpía en sistemas de entibación

Guggisberg Alarcón, Gabriel Ignacio January 2012 (has links)
Ingeniero Civil / Actualmente la geotermia ha comenzado su explotación con la finalidad de generación eléctrica mediante una producción limpia con bajos niveles de contaminación en comparación a las generaciones convencionales. Esta línea de estudio apunta a un aprovechamiento de las propiedades térmicas del suelo y no a la generación eléctrica, mediante la obtención de calor o frío que otorgan las propiedades del terreno que a primera vista satisfacen tanto las necesidades de verano como las de invierno, pues el suelo mantiene una temperatura constante entre los 5 y 30 metros de profundidad, temperatura que mediante nuevas tecnologías puede ser absorbida, en este caso con agua, y transportada para abastecer sistemas de climatización como sistemas de agua caliente sanitaria. En la primera etapa de estudio de la utilización de geotermia de baja entalpía enfocada a la edificación (Muñoz, 2011) se implementaron dos Pilas de entibación y sus correspondientes Anclajes con el objetivo de medir el potencial geotérmico de estos elementos embebidos en el subsuelo. El presente trabajo tiene como objetivo continuar el desarrollo de conocimiento acerca del potencial aprovechamiento geotérmico de estas instalaciones. El trabajo se desarrolló en el periodo de construcción del proyecto Beauchef 851, perteneciente al edificio de la Escuela de Ingeniería de la Universidad de Chile, entre Septiembre del 2011 y Mayo del 2012, abarcando tres líneas principales; estudio y re-diseño del equipo de medición Thermal Response Test (TRT), mediciones en terreno entre Diciembre 2011 y Abril 2012, y finalmente estudio del rendimiento energético de las instalaciones. El equipo TRT mejorado permitió realizar una serie de mediciones exitosas para la obtención de parámetros de diseño de las instalaciones, como conductividad térmica tanto para la Pila como para los Anclajes y el rendimiento energético de estas mismas instalaciones. Las mediciones en terreno fueron variadas, utilizando distintas metodologías según el parámetro o información que se quisiera obtener, en este trabajo se definieron mediciones para conocer la influencia de la exposición a condiciones ambientales de las instalaciones, mediciones para conocer la temperatura inalterada tanto de la Pila como de los Anclajes, y finalmente mediciones para la obtención de la conductividad térmica de las instalaciones. Mediante las mediciones realizadas se caracterizó la temperatura interna de las instalaciones, obteniendo perfiles de variación diaria de acuerdo a la temperatura ambiental, durante el periodo en que la Pila se encontraba expuesta a condiciones ambientales (parcialmente) en un 46%. Con todas las mediciones analizadas se definió la conductividad térmica de una Pila con el valor de 1,6 W/mK y un valor de 1,7 W/mK para los Anclajes. Con esto se obtuvo finalmente el rendimiento de un sistema geotérmico implementado en el interior de estructuras de sostenimiento, alcanzado valores de 150 W/mK en el caso de las Pilas y 100 W/mK en el caso de los Anclajes como tasas de rechazo de calor para la carga térmica aplicada de 4500 W en promedio.
10

Instrumentação para levantamento de dados do perfil geotérmico superficial visando a troca sustentável de calor / Instrumentation to obtain the data profile of surface geothermal heat aiming at sustainable heat exchange

Longo, Adriano José 10 October 2014 (has links)
Nowadays, the rational energy consumption is one of the main concerns of the whole modern society. Thus, this dissertation contributes to improve energy efficiency, increase the renewable energy sources and to develop cleaner and more efficient technologies as the greatest challenges of science and technology. This is reflected in today s residential energy consumption in Brazil which is about 26%, mostly produced by equipment of high energy consumption as is the case of showers and air-conditioning, according to the Energy Research Company - EPE. The main goal of this research was to develop a dedicated electronic instrumentation to determine the superficial geothermal profile, focusing at cost reduction and short installation times. With many experimental data was possible to establish the heat exchange capacity of heat exchangers buried underground. The experimental data was obtained in the Center of Studies in Energy and Power Systems Center (CEESP) at Federal University of Santa Maria (UFSM). It was developed a dedicated acquisition board based on a microprocessor (PIC18f5420) and a tubular PVC probe setup with 11 digital temperature sensors model DS18B20 with 5 m long rod and half inch diameter. The temperature data were collected during 12 months recorded every 2 minutes This dissertation is mostly focused on the establishment of basic electronic instrumentation for conducting summary surveys of temperature data in shallow subsurface geothermal profile in any area, thereby reducing costs and installation times. These geothermal profile data are important for various areas in establishing the ability to exchange heat between buried materials and the homely ambient, such as construction, underground power cabling and architecture. The experimental area was the Center of Studies in Energy and Power Systems (CEESP), in the campus of UFSM in Santa Maria - RS. The data collection will serve as input for the rapid establishment of underground temperature distribution curves where is intended to utilize geothermal energy. The data collection was realized by a dedicated data logger based on the PIC18f5420 microprocessor. The entire plate is sized, constructed and programmed in CEESP along with a standard PVC tubular probe five meters long and half inch diameter fitted with 11 digital temperature sensors type DS18B20, to enable monitoring the underground temperature change from surface up to a desired depth. Collection of temperature data was made in the course of 12 months, with measurements recorded at every 2 minutes. Some interruptions occurred during the measurement period, but it did not interfere with the final outcome results. It was then possible to establish the mean thermal profile parameters during daily periods and the maximum and minimum temperatures throughout the year. With the results obtained in this research is possible to prove that the thermal variation (temperature) of the soil profile decreases gradually with depth until it stabilizes at a value which is approximately the average annual temperature of that local area. During these tests, it was observed that the temperature measurements in the experimental campus CEESP for a maximum depth of five meters ranged between 18 and 22 °C. The data reduction method called Least Squares Method was used to make projections of temperatures for deeper depths. Thus it was possible to confirm the theoretical information that the soil temperature at any location a few meters deep tends to stabilize at the annual average surface temperature in that place. In Santa Maria-RS, according to the National Institute of Meteorology (INMET), the annual average temperature is 19.5 °C. / Atualmente existe uma preocupação de toda a sociedade com relação ao consumo racional de energia. Desta forma busca-se melhorar a eficiência energética, aumentar a proporção de fontes renováveis de energia elétrica e desenvolver tecnologias mais eficientes e limpas. O consumo residencial hoje é 26% do consumo nacional, segundo a Empresa de Pesquisa Energética EPE, sendo que os maiores consumidores de energia nos lares são os chuveiros e os condicionadores térmicos de ambientes. Essa dissertação tem por objetivo o estabelecimento de uma instrumentação eletrônica dedicada à realização de levantamentos sumários de dados do perfil geotérmico superficial do subsolo numa área qualquer, reduzindo assim custos e tempo de instalação de projetos geotérmicos para condicionamento de ambientes. Esses dados do perfil geotérmico são importantes para várias áreas no estabelecimento da capacidade de troca do calor entre materiais enterrados e o ambiente. Este conhecimento pode ser utilizado também na construção civil, arquitetura e dimensionamento de cabos de energia subterrâneos, entre outros. A área experimental utilizada foi a do Centro de Estudos em Energia e Sistemas de Potência (CEESP), no Campus da UFSM em Santa Maria - RS. As coletas de dados vão servir de subsídios para o estabelecimento rápido das curvas de distribuição da temperatura do solo no local onde se pretenda estabelecer o aproveitamento da energia geotérmica. Para a coleta de dados foi desenvolvido uma placa dedicada de aquisição baseada num microprocessador PIC18f5420. A placa foi toda dimensionada, construída e programada no CEESP juntamente com um padrão de sonda tubular de PVC de cinco metros de comprimento e meia polegada de diâmetro, onde foram instalados 11 sensores digitais de temperaturas modelo DS18b20. Com esta sonda multissensora fez-se a monitoração automática da variação de temperatura subterrânea desde a superfície até a profundidade desejada. Para comprovar a efetividade da proposta da instrumentação geotérmica com a sonda sensora, fez-se uma coleta de dados de temperatura no decorrer de 12 meses, com medições registradas a cada 2 minutos. Durante o período de medição, ocorreram algumas interrupções nas medidas, mas que não interferiram no resultado final dos experimentos e serviram para demonstrar como se pode facilmente interpolar os valores da variável medida. Estabeleceram-se então parâmetros térmicos do perfil durante períodos diários, de máximas e mínimas temperaturas no decorrer de um ano. Com os resultados obtidos nesta pesquisa foi possível comprovar que a variação térmica (temperatura) do perfil do solo diminui gradativamente de acordo com a profundidade até estabilizar num valor que corresponde aproximadamente à temperatura média anual do sítio de estudo. Durante estes testes, observou-se que as medições de temperatura do solo no campus experimental do CEESP na profundidade máxima medida de cinco metros variaram entre 18 e 22 °C. Foi aplicada uma redução de dados através do Método dos Mínimos Quadrados para obter medidas que permitem projeções de temperaturas para profundidades maiores e assim recomendar as profundidades necessárias para a instalação de trocadores de calor. Os dados confirmaram as informações teóricas de que a temperatura do solo em qualquer local após alguns metros de profundidade tende a se estabilizar em um valor que corresponde à temperatura média anual da superfície do ambiente daquela área. Em Santa Maria-RS, segundo Instituto Nacional de Meteorologia (INMET) a temperatura média anual é de 19.5 °C.

Page generated in 0.0547 seconds