• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 6
  • 6
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 85
  • 85
  • 21
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

In situ and in vitro analysis of germ and stem cell marker-positive cells in the postnatal ovary of the common marmoset monkey (Callithrix jacchus)

Fereydouni, Bentolhoda 22 July 2014 (has links)
No description available.
22

Human Spermatogenesis : Differential Gene Expression And Regulation

Sanyal, Amartya 04 1900 (has links)
Spermatogenesis is a complex process of male germ cell development in which the diploid spermatogonia undergo series of mitotic divisions and differentiation steps culminating into the preleptotene spermatocytes which then enter into the meiotic prophase following a single replication cycle. This phase is characterized by meiotic recombination and is followed by reduction division resulting in haploid round spermatids. These cells then undergo extensive morphological and nuclear changes to form a unique cell, spermatozoa. This entire germ cell differentiation process occurs in a unique environment present inside the seminiferous tubules which is created by the Sertoli cells, the somatic cells in the tubules by forming junctions with each other thus providing unique milieu to the developing germ cells. Within the tubule, the germ cells are also arranged in an orderly manner called stages of spermatogenesis indicating a complex mechanism of germ cell differentiation. This complex differentiation process is a consequence of developmentally and precisely regulated differential gene expression (Eddy, 2002). Unraveling the molecular mechanisms involved in the male germ cell development is an uphill task due to the complexity of the cyto-architecture existing in the tubules and further complicated by unavailability of established germ cell lines and lack of cell culture systems that facilitate the germ cell differentiation in vitro. Comparative gene expression analysis of spermatogenesis in nematodes, flies and rodents revealed highly conserved transcriptomes and have provided some insights into its regulation (Schlecht and Primig, 2003). However, these data fail to represent the genetic and biological complexity of human spermatogenesis. In the present study, an attempt has been made to identify the genes that are differentially expressed in human tetraploid and haploid germ cells and to investigate the mechanism of regulation of the genes expressed in the post-meiotic germ cells. To identify the cell type specific genes, expression profiling of the human tetraploid and haploid germ cells was carried out using cDNA microarray. These cells were purified by centrifugal elutriation (Meistrich et al., 1981; Shetty et al., 1996) from the human testicular tissues obtained from the patients undergoing orchidectomy as treatment for prostate cancer. Purity of the enriched population of the germ cells was ascertained by DNA flow cytometry and by RT-PCR analysis using the known cell-specific markers and ruling out contamination of the somatic cells such as the Sertoli cells and the Leydig cells. Microarray experiments were carried out with the RNA isolated from each cell type and labeling the cDNA with Cy3/Cy5-dUTP and hybridizing to the human 19K array chip (University Health Network, Toronto, Canada) containing 19,200 ESTs. Two independent hybridizations were carried out using the germ cells isolated from two individuals and the microarray data were analyzed using Avadis 3.1 software (Strand Life Sciences, India). Analysis of the microarray data following normalization revealed that 723 transcripts showed higher expression in the meiotic cells whereas 459 transcripts showed higher expression in the post-meiotic germ cells. Microarray data were validated further by RT-PCR analysis of some of the differentially regulated genes. The DAVID analysis (Database for Annotation, Visualization and Integrated Discovery; http://david.abcc.ncifcrf.gov/) of these genes revealed that many genes associated with diverse functions and pathways appeared to be differentially expressed in both cell types. It is known that many biological systems exhibit distinct temporal gene expression profiles during different processes related to cell cycle, stress response and differentiation. Similarly, there are sets of genes, which respond to specific stimuli, appear to be synchronized in their expression. Such ‘synexpressed’ genes have been shown to be regulated by common transcription regulatory processes and have similar upstream transcription factor binding sites (Niehrs and Pollet, 1999). And therefore, having identified genes that appeared to be differentially expressed in the haploid and the tetraploid germ cells, attempt was made to analyze transcription factor binding sites in the promoter of those genes. In silico promoter analysis of several genes showing higher post-meiotic expression was carried out in order to identify the common regulatory motifs. Analysis of the annotated promoters (available from Eukaryotic Promoter Database; http://www.epd.isb-sib.ch/) of about forty genes highly expressed in the post-meiotic germ cells using TFSEARCH program (http://www.cbrc.jp/ research/db/TFSEARCH.html) confirmed that many genes had common transcription factor binding sites. Interestingly, almost all of the analyzed genes harbored SRY (Sex determining Region in Y)/SOX (SRY-box containing) binding motifs. In addition, the promoters of genes such as Protamine 1 and 2, Transition protein 1 and 2, A kinase (PRKA) anchor protein 4 that are known to be expressed post-meiotically, also harbor SRY binding sites suggesting that SRY may be one of the key regulators of the post-meiotic gene expression. SRY is a HMG-box containing member of Sox-family of architectural transcription factors. SRY is encoded by the Y chromosome and was first discovered as the testis-determining factor in mammals (Koopman et al., 1991). SRY HMG-box is eighty amino acids conserved motif that binds to the minor groove of the DNA in a sequence-dependent manner resulting in its bending and thus regulating the gene expression. The RT-PCR analysis of the human haploid and tetraploid germ cells showed very high expression of SRY in the post-meiotic cells further suggesting key role of SRY in the post-meiotic gene regulation. Role of SRY in the post-meiotic gene expression was investigated by determining the effect of SRY on human Protamine 1 (PRM1) promoter, a gene known to be exclusively expressed in the round spermatids and as indicated above, harbors many SRY binding sites in its promoter. SRY cDNA was cloned into the mammalian expression vector, pcDNA3.1 and the PRM1 promoter was cloned into the promoter-less pGL3 Basic vector upstream of the Luciferase reporter gene. Co-transfection of both constructs led to up-regulation of PRM1 promoter activity in both HeLa cells and LNCaP cells in a dose-dependent manner clearly demonstrating the role of SRY in PRM1 gene expression. Sequential deletion of the SRY binding sites in the PRM1 promoter led to the identification of the critical SRY binding motif important for SRY-mediated upregulation of PRM1 gene expression. This was confirmed by demonstrating in vitro binding of SRY to its critical binding site in the PRM1 promoter by gel shift assay using the nuclear extract of the HeLa cells transfected with FLAG-tagged SRY. The human SRY is an atypical transcription factor that binds DNA through its HMG, but unlike the mouse Sry and other Sox proteins, lacks the trans-activation domain and therefore requires other factors for its actions. Recently, the glutamine-rich, zinc-finger containing transactivator, Specificity protein 1 (Sp1) has been identified as one such interacting partner (Wissmuller et al., 2006). RT-PCR analysis showed that human SP1 is highly expressed in the haploid germ cells and could up-regulate PRM1 expression which harbors two SP1 binding sites in its promoter. When co-transfected, SRY and SP1 up-regulated PRM1 promoter in co-operative manner suggesting that SP1 may act in coordination with SRY in regulating PRM1. All these data taken together clearly signifies a critical role of SRY in post-meiotic germ cell gene expression. Recent reports suggest that SRY is also expressed in the adult human brain and prostate. However, its role in these tissues is not clearly understood. The Y chromosome has been shown to be frequently lost in prostate cancer and has also been shown to suppress the tumorigenicity of the PC-3 prostate cancer cells suggesting that the Y chromosome encoded genes may be involved in tumor suppression. SRY can physically interact with the androgen receptor (AR) and thereby interfere in its downstream signaling (Yuan et al., 2001). Since the prostate tumors show initial androgen-dependency, it was interesting to look at the role of SRY in the prostate cancer. To decipher the effect of SRY on the androgen-responsive LNCaP cells, stable clones of LNCaP expressing human SRY were generated. These clones showed significant decrease in growth in response to 5α-dihydrotestosterone (DHT) compared to the vector transfected or the parental LNCaP cells. In the soft agar colony formation assay, the SRY expressing LNCaP formed smaller colonies as compared to the controls in presence of DHT. Preliminary experiments in male athymic nude mice demonstrated that one of the SRY expressing clones showed reduced tumor growth compared to control cells suggesting that SRY may play a role in prostate cancer progression by decreasing the sensitivity to DHT. To summarize, the present study has identified several genes differentially expressed in the human haploid and tetraploid germ cells and further showed that SRY may be one of the key regulators of the post-meiotic gene expression.
23

Androgens and the masculinisation programming window

Dean, Afshan January 2012 (has links)
The commonest reproductive disorders of young men (namely low sperm counts, testicular germ cell cancer) may originate in fetal life similar to established disorders (cryptorchidism, hypospadias) that manifest at birth. These disorders are interlinked and may comprise a testicular dysgenesis syndrome (TDS), a concept supported by animal model studies. The latter have identified the likely time-frame within which TDS disorders may be induced, namely within the so-called masculinisation programming window (MPW). During this critical period, sufficient testosterone (androgen) must be produced by the fetal testis to program the male reproductive tract so that it will differentiate and grow normally after the MPW. Impaired androgen production or action within the MPW can result in smaller reproductive organs and their abnormal formation and function (e.g. cryptorchidism, hypospadias). The MPW is thus of fundamental importance in determining normal, or abnormal, male reproductive development and function for later life. There are two big unanswered questions about the MPW. First, what determines its timing? Second, what mechanisms are controlled by androgens specifically within this time-window and not at later time points? Three approaches were undertaken to address the first question experimentally in rats. First, investigation of whether the availability of androgens and or androgen receptors (AR) plays a role in determining the onset or ‘opening’ of the MPW. Second, investigation of whether the expression of AR co-regulators was a factor in determining androgen sensitivity during the MPW. Third, investigation of whether prostaglandins played a role in mediating androgen action in the MPW, as studies in the 1980s had suggested this possibility. To address what mechanisms are controlled by androgens specifically within the MPW, the expression of selected genes in the genital tubercle was investigated before, during and after the MPW in fetuses that had been exposed to treatments that modulated androgen action. Selection of genes was based on microarray studies and data reported in the literature (ie candidate genes). The studies reported in this thesis show that neither availability of androgens nor the AR are important in determining onset of the MPW, and providing exogenous androgens either prior to or during the MPW does not advance or enhance masculinisation. These studies also showed that females may have a slightly different window of susceptibility to androgen action than do males. Key AR co-regulators have been characterized in the male reproductive tract for the first time, two of which (BRG1, CBP) show changes in expression through development of the testis consistent with a role in Sertoli cells. Another AR co-regulator, RWDD1, was found to switch off in the absence of androgen action in the genital tubercle, pointing to a potential role during and/or after the MPW. Studies involving gestational exposure to indomethacin (a compound which inhibits prostaglandin synthesis) during the MPW showed no detectable effect on masculinisation. Finally, evaluation of candidate genes for mediating androgen action in the genital tubercle during the MPW, failed to identify their key involvement, thus they are unlikely to be involved in penis development and disorders such as hypospadias.
24

Gene Expression Changes from Exposure to Phthalates in Testicular Cells

Nguyen, Bryan 20 June 2012 (has links)
Phthalates are industrial plasticizers with a wide range of applications. Di-(2-ethylhexyl) phthalate (DEHP) is one of the most highly produced and frequently studied phthalates. Its metabolite, mono-(2-ethylhexyl) phthalate (MEHP) is known as a testicular toxicant. The objective of this study was to examine expression of the genes of interest in testicular germ cells exposed to MEHP in a dose- and time-dependent manner at concentrations of 1µM, 10µM, and 100µM at 24, 48, 72 and 96hr time points. The genes consisted of Testisin, GSPT1, and MGMT genes which are a tumor suppressors, phase II xenobiotic metabolizing enzyme and DNA repair gene respectively. These genes were analyzed by Quantitative Real Time PCR (RT-PCR). The results revealed an overall down-regulation for each gene as the concentration and/or time increased. Testisin was the focus of the gene expression analysis. Testisin is epigenetically silenced in testicular germ cell tumors (TGCT) by DNA methylation at the 5’CpG island of the gene. To investigate if MEHP is capable of DNA hypermethylation, a co-exposure with 5-azacytidine (demethylating agent) was conducted. Compared with the 5-azacytidine treatment alone, there was a significant down-regulation of the Testisin gene in the co-exposure. This suggests that MEHP may down-regulate Testisin gene expression by DNA methylation. These findings provide evidence that MEHP can alter the expression of Testisin, GSTP1 and MGMT, genes that are associated in the risk of developing testicular germ cell tumors. In addition, results indicated that MEHP may cause DNA methylation leading to the down-regulation/silencing of genes such as Testisin.
25

SPAG16 is a Bifunctional Gene Regulating Male Fertility

Nagarkatti-Gude, David R 31 July 2012 (has links)
SPAG16 is the murine orthologue of Chlamydomonas reinhardtii PF20, a protein known to be essential to the structure and function of the “9 + 2” axoneme. The “9 + 2” axoneme provides the cytoskeletal core of all eukaryotic motile cilia and flagella. In Chlamydomonas, the Pf20 gene encodes a single protein present in the central pair of the axoneme. Loss of Pf20 prevents central pair assembly and results in flagellar paralysis. The murine Spag16 gene encodes two proteins. While 71 kDa SPAG16L is found in all murine cells with motile cilia or flagella, 35 kDa SPAG16S transcript and protein are detected only in male germ cells, suggesting a unique role distinct from general axoneme formation. Transgenic mouse studies published previously by our lab have shown that abrogation of both SPAG16 isoforms causes arrest of spermatogenesis, and the mutant allele is not transmitted to offspring by chimeric males. Mice homozygous for a knock-out of SPAG16L alone are infertile, but show no abnormalities in spermatogenesis. The defects seen in chimeric Spag16 mutant mice, unaccounted for by loss of SPAG16L, indicate a possible role for SPAG16S in the specialized process of male germ cell development. Our results demonstrate that SPAG16S is predominantly found in specific regions within the nucleus of round spermatids. These nuclear sub-domains also contain SC35, a known marker of nuclear speckles enriched in pre-mRNA splicing factors. Putative interaction partners of SPAG16S are also shown to play critical roles in the peri-nuclear region during the round spermatid transition to the condensation and elongation stage of spermiogenesis, the final specialization point in sperm development. The distinct localization of SPAG16S at this critical juncture, its interaction with discretely localized proteins at a critical temporal junction in spermatogenesis, and its ability to modulate SPAG16L expression, suggest that SPAG16S plays an important role in the gene expression machinery of male germ cells, and represents an evolutionary distinction in axoneme gene function.
26

Efeitos de imunossupressores sobre o sistema imunológico em transplantes de células germinativas em trutas arco-íris / Effects of immunosuppressants on immune system in germ cell transplantation in rainbow trout

Yoshinaga, Túlio Teruo 26 March 2018 (has links)
Os transplantes de células germinativas e enxertos de testículo podem ser aplicados na reprodução de espécies comerciais e na conservação de espécies ameaçadas de extinção. No entanto, a maior limitação dos transplantes está na sua limitada eficiência, devido à baixa porcentagem de hospedeiros capazes de gerar gametas derivados do doador e da rejeição de enxertos de testículo alogênicos após poucas semanas de sua implantação. O sistema imunológico dos hospedeiros podem estar envolvidos na baixa de eficiência dos transplantes e na rejeição dos enxertos. Desta forma, este trabalho buscou verificar se a administração de drogas imunossupressoras como o tacrolimus e ciclosporina em emulsão poderiam ser utilizados para prolongar a viabilidade de enxertos de testículo em trutas arco-íris. Na primeira parte, experimentos in vitro com leucócitos do sangue periférico demonstraram que ambos o tacrolimus e a ciclosporina impedem a proliferação celular mesmo sob estímulo proliferativo da concanavalina. Nos ensaios in vivo, ambas as doses de tacrolimus (0,5 e 1,5 mg/kg) e a mais baixa de ciclosporina (20 mg/kg) inibiram significativamente a expressão de il2 no rim cefálico três dias após a injeção. Já a dose de 40 mg/kg de ciclosporina inibiu a expressão de il2 por até sete dias após a injeção. Na segunda parte, enxertos alogênicos de testículo foram realizados em animais tratados semanalmente com emulsões de tacrolimus. As análises histológicas (coloração H.E.) e as de RT-PCR (vasa e txdnc6) demonstraram a presença de espermatogônias na primeira semana e indicaram a presença de espermátides/espermatócitos na quinta semana, respectivamente, em alguns animais do grupo tratado com a dose de 0,5 mg/kg de tracrolimus. No grupo tratado com a dose mais alta de tacrolimus (1,5 mg/kg) e no grupo controle (sem imunossupressor), células germinativas ou marcadores destas não foram detectados. Estes resultados, portanto, fazem do tacrolimus um imunossupressor promissor para utilização em enxertos alogênicos e também em transplantes de células germinativas de truta arco-íris. A administração concomitante de um outro imunossupressor conjugado ao tacrolimus (na baixa dosagem) para inibir duas ou mais vias de ativação do sistema imunológico, conforme utilizado em transplantes de órgãos em humanos, pode ser uma alternativa para otimizar os efeitos imunossupressivos nos animais receptores. / Germ cell transplantation and testis graft can be applied for the reproduction of commercial or endangered species. However, mechanisms of rejection from the host immune system might limit the production of surrogate gametes and progeny after transplantation and induce rejection of testis allografts within few weeks. In this work, we aimed to administer immunosuppressants-containing emulsions in order to verify whether they are capable to prevent immune rejection and promote testis allograft survival in rainbow trout. In the first part of this study, it was demonstrated in vitro that tacrolimus and cyclosporine were able to inhibit leucocyte proliferation even under concanavalin-induced mitotic stimulation. In in vivo experiments, both dosage of tacrolimus (0,5 and 1,5 mg/kg) and a lower of cyclosporine (20 mg/kg) inhibited significantly the expression of il2 in head kidney at three days post-injection. A higher dosage of cyclosporine (40 mg/kg) was able to inhibit il2 expression for up to seven days post-injection. In the second part, testis allografts were conducted in fish treated weekly with tacrolimus-containing emulsions. Histological (H.E. staining) and RT-PCR (vasa and txdnc6) analysis demonstrated the presence of spermatogonias in the first week and indicated the presence of spermatids/spermatocytes in the fifth week, respectively, in some animals treated with 0,5 mg/kg of tacrolimus. In the group treated with the highest tacrolimus dose (1,5 mg/kg) and in the control group (without immunosupressant), no germ cells or their respective markers were detected. These results suggest that tacrolimus comprise a promising immunosuppressant, with applications to testis allografts or germ cell transplantation in rainbow trout. Co-administration combining tacrolimus (at lower dose) with other immunosuppressive drugs for inhibiting more than two activation pathways of the immune system, as done in human organ transplantation, can be an alternative to optimize the immunossupressive effects in host organisms.
27

The role of DNA methylation in the regulation and action of microRNA in testicular germ cell tumor / CUHK electronic theses & dissertations collection

January 2014 (has links)
It was previously demonstrated that miR-199a was down-regulated in testicular germ cell tumor (TGCT) partly caused by hypermethylation of its promoter. More detailed analyses showed that miR-199a-5p, one of its two derivatives, suppressed TGCT invasiveness and proliferation via directing targeting PODXL and MAFB. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this project we identified DNMT3A, the de novo methyltransferase, as a direct target of miR-199a-3p using a 3’-UTR reporter assay. In NT2 (NTera 2) and HT (Hs 1.Tes) cells, miR-199a-3p regulated the expression of endogenous DNMT3A (both DNMT3A1 and DNMT3A2 isoforms), especially DNMT3A2 isoform. In clinical samples, the expression of DNMT3A2 and miR-199a-3p were reciprocally regulated. However, DNMT3A did not regulate miR-199a expression. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation partly through targeting DNMT3A. MiR-199a-3p could restore the expression of APC and MGMT via de-methylation in their promoters. Our studies demonstrated the dysregulation of miR-199a-3p in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potential therapeutic use of synthetic miR-199a-3p oligonucleotides as effective demethylation agent in the treatment of TGCT. However, since DNMT3A expression did not regulate miR-199a expression, the mechanism of promoter DNA hypermethylation of miR-199a in TGCT needs further investigation. / MiR-199a is encoded by two loci in the human genome, namely, miR-199a-1 on chromosome 19 and miR-199a-2 on chromosome 1. Another microRNA, miR-214, also locates on chromosome 1. Previous study revealed that it is co-transcribed with miR-199a-2, which is directed by miR-199a-2 promoter. However, the biological significance of the co-expression of miR-199a and miR-214 remains largely unknown. In this project, it was determined that miR-199a and miR-214 were concordantly expressed in TGCT. Silencing of DNMT1 increased the expression of miR-199a and miR-214, accompanied by de-methylation in the promoters of miR-199a-1/2. Overexpression of TP53 down-regulated the expression of DNMT1 and increased the expression of mature miR-199-3p/5p and miR-214. In addition, silencing of PSMD10 up-regulated the expression of TP53, while miR-214 over-expression resulted in PSMD10 down-regulation and TP53 up-regulation. Collectively, our findings highlighted a miR-199a/miR-214/PSMD10/TP53/DNMT1 self-regulatory network, which caused the down-regulation of miR-199a, miR-214 and TP53, as well as the up-regulation of DNMT1 and PSMD10 in TGCT. These observations partly explain the mechanism of promoter DNA hypermethylation in miR-199a in TGCT. They also suggest a potential therapeutic approach by targeting the miR-199a/miR-214/PSMD10/TP53/DNMT1 regulatory network in the treatment of TGCT. / 先前的研究證實miR-199a在睾丸生殖細胞腫瘤 (簡稱睾丸癌) 中是低表達的,部分歸因於其啟動子區域過度甲基化。對其功能研究發現miR-199a能抑制睾丸癌細胞的生長,侵襲和轉移,且miR-199a的抑癌屬性應歸功於它的兩個衍生物之一miR-199a-5p。然而,miR-199a的另一個衍生物miR-199a-3p在睾丸癌中的生物學功能仍然在很大程度上是未知的。此研究中,DNMT3A被鑒定為miR-199a-3p的直接靶定目標。在NT2和HT細胞中,miR-199a-3p能調控內源性DNMT3A(DNMT3A1和DNMT3A2)的表達水準,尤其是DNMT3A2。在臨床樣本中,DNMT3A2的表達水準與miR-199a-3p的表達水準呈負相關。但DNMT3A並不能調控miR-199a的表達水準。進一步研究顯示過表達miR-199a-3p能減少APC和MGMT啟動子區域甲基化而恢復其表達水準。研究證實異常表達的miR-199-3p可能在睾丸癌的癌變過程中發揮作用,並提出一個潛在的治療方案,即使用miR-199a -3p作為有效的去甲基化藥劑治療睾丸癌。然而睾丸癌中導致miR-199a啟動子區域過度甲基化的機制有待進一步研究。 / 在人類基因組中,miR-199a-1(位於19號染色體)和miR-199a-2(位於1號染色體)都編碼miR-199a。同時miR -214也位於1號染色體,研究表明miR-214與miR-199a-2由miR-199a-2啟動子介導共同轉錄,但miR-199a和miR- 214共同表達的生物學意義仍未知。此研究中,miR-199a和miR-214在睾丸癌中的表達呈現一致性。沉默DNMT1後miR-199a和miR-214的表達水準顯著提高,並伴隨著miR-199a-1/2啟動子區域的DNA去甲基化。在NT2細胞中。過表達TP53能下調DNMT1的表達水準,同時上調miR-199-3p/5p和miR- 214的表達水準。此外,過表達miR -214能導致PSMD10表達水準的下調以及TP53表達水準的上調。綜上所述,我們提出一個miR-199a/miR-214/PSMD10/TP53/DNMT1自我調控網路,此調控通路能引起睾丸癌中miR-199a,miR-214和TP53表達水準的下調,以及DNMT1和PSMD10表達水準的上調,且部分解釋睾丸癌中miR-199a啟動子區域過度甲基化的機制,同時該調控網路可作為治療睾丸癌的一個潛在靶點。 / Chen, Bifeng. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2014. / Includes bibliographical references (leaves 103-127). / Abstracts also in Chinese. / Title from PDF title page (viewed on 20, December, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
28

Investigating the expression and function of DAZL and BOLL during human oogenesis

He, Jing January 2016 (has links)
Fetal germ cell development is a key stage of female reproductive life. The DAZ family proteins (DAZ, DAZL and BOLL) are RNA-binding proteins with critical roles in murine germ cell development but their expression and potential targets in the human are largely unknown. The studies in this Thesis investigated the expression and function of DAZL and BOLL in human fetal ovary. Both DAZL and BOLL mRNA are increased dramatically at the time of entry into meiosis. Immunohistochemical analysis with specific meiotic markers suggested that DAZL and BOLL have distinct spatial-temporal expression patterns, with minimal co-expression – BOLL expression was transient prior to follicle formation. This pattern was shown not to be present in the mouse fetal ovary, where Dazl and Boll are co-expressed, indicating a limitation of the mouse for exploring the function of Boll. Two human cell lines, embryonic kidney derived HEK293 cells and germ cell tumour derived TCam-2 cells were used as models to identify the mRNA targets of DAZL and BOLL after transfection of DAZL or BOLL vectors. In HEK293 cells, TEX19 and TEX14 were confirmed as potential targets of both DAZL and BOLL, and CDC25A as a potential DAZL target. Further experiments indicated that DAZL and BOLL did not increase target mRNA transcription but increased stabilisation. A DAZL/GFP co-transfection-FACS system for TCam-2 cells was established as this cell line has very low transfection efficiency. TEX14 and SYCP3 significantly increased in GFP+ve-DAZL+ve cells when compare to the GFP-ve-DAZL-ve cells, whilst SOX17 and DNMT3L significantly decreased in the GFP+ve-DAZL+ve cells. A 3'-UTR luciferase assay confirmed regulation of TEX14 and SOX17 by DAZL through their 3'-UTR. RNA immunoprecipitation further demonstrated direct binding between human TEX14, TEX19, SYCP3, SOX17 mRNA and DAZL protein, and that TEX14 binding is through its 3'-UTR. Dual fluorescence immunohistochemistry showed that SOX17 and DMNT3L are expressed in early germ cells with DAZL, and are later down-regulated co-incident with that of DAZL, consistent with the novel repressive effect of human DAZL on these two potential targets. These studies indicate that DAZL and BOLL are associated with different key meiotic stages of germ cell development in human fetal ovary. Several potential mRNA targets of DAZL and BOLL, and a novel repression function of human DAZL on its mRNA targets were identified giving further insight into the role of these factors in human ovarian development.
29

Vitrificação versus congelamento lento não automatizado em tecido ovariano de camundongos CF1

Terraciano, Paula Barros January 2016 (has links)
Introdução: a alta prevalência do câncer e o aumento significativo da sobrevivência em longo prazo geraram interesse quanto à preservação da fertilidade em mulheres jovens expostas a quimioterapia e radioterapia. Neste sentido estudos de congelamento de tecido ovariano para posterior transplante, abriram uma nova perspectiva de aplicação no tratamento e prevenção da infertilidade feminina. Objetivos: comparar dois protocolos de congelamento de tecido ovariano, um lento não automatizado e um por vitrificação, com o intuito de avaliar a viabilidade dos tecidos para posterior transplante autólogo. Método: Foram utilizadas 30 camundongos fêmea CF1 com aproximadamente 8 semanas e pesando 29,29g±2,9. •Os ovários extraídos foram vitrificados ou congelados, mantidos em nitrogênio líquido por 30 dias e descongelados. Após o descongelamento, o ovário esquerdo foi destinado às análises histológicas e caracterização por imuno histoquímica para o marcador mouse vasa homologue (MVH) e o ovário direito foi utilizado para os testes de viabilidade celular com exclusão por azul de trypan. Resultados: Nas análises de Hematoxilina e Eosina (HE) foram contados folículos primordiais, primários, pré-antrais e antrais. Não houve diferença significativa na proporção de folículos primordiais, primários e pré-antrais após descongelamento entre os grupos testados. A contagem de folículos antrais foi significativamente maior no grupo de vitrificação (p = 0,004). No ensaio de imunohistoquímica para o marcador MVH, folículos MVH + e MVH- foram contados e comparados com o número total de folículos. O grupo congelamento lento apresentou maior número de células não marcadas (p = 0,012). Conclusão: Embora ambos os protocolos tenham apresentado resultados semelhantes na análise histológica das contagens foliculares, o protocolo de vitrificação foi significativamente melhor para preservar a população de células tronco ovarianas. / Introduction: The high prevalence of cancer and the significant increase in long-term survival have generated interest as the preservation of fertility in young women exposed to chemotherapy and radiotherapy. Experimental techniques have been tried in an attempt to reverse the ovarian failure induced by these treatments. In this regard studies of ovarian tissue freezing for subsequent transplantation disclose a new application perspective in the treatment and prevention of female infertility. Objective: two ovarian tissue freezing protocols were tested, a non-automated slow-freezing and by vitrification, in order to assess the viability of the tissues for subsequent autologous transplantation. Methods: as ovaries donors, were used 30 female CF1 mice approximately 8 weeks and weighing 29,29g±2,9. • The ovaries were vitrified or frozen, stored in liquid nitrogen for 30 days and thawed. After thawing, the left ovary was intended for histological and immunohistochemical characterization by histochemical marker for MVH and right ovary was used for the tests with cell viability by trypan blue exclusion. Results: In HE slides was counting primordial, primary, pre antral and antral follicles. No significant difference was found in the proportion of high-quality primordial, primary and pre antral follicles after thawing/warming in the slow-freezing and vitrification group, respectively. The antral follicle counting was significant higher in vitrification group (p=0,004). In immunohistochemistry assay for MVH Antibody , MVH+ and MVH- follicles were counted and compared with the total number of follicles and slow freeze group had a higher number of not marked cells (p=0,012). Conclusion: Although both protocols showed similar results in the histological analysis for follicular counts, the vitrification protocol was significantly better for preserve the ovarian stem cell population.
30

Gene Expression Changes from Exposure to Phthalates in Testicular Cells

Nguyen, Bryan 20 June 2012 (has links)
Phthalates are industrial plasticizers with a wide range of applications. Di-(2-ethylhexyl) phthalate (DEHP) is one of the most highly produced and frequently studied phthalates. Its metabolite, mono-(2-ethylhexyl) phthalate (MEHP) is known as a testicular toxicant. The objective of this study was to examine expression of the genes of interest in testicular germ cells exposed to MEHP in a dose- and time-dependent manner at concentrations of 1µM, 10µM, and 100µM at 24, 48, 72 and 96hr time points. The genes consisted of Testisin, GSPT1, and MGMT genes which are a tumor suppressors, phase II xenobiotic metabolizing enzyme and DNA repair gene respectively. These genes were analyzed by Quantitative Real Time PCR (RT-PCR). The results revealed an overall down-regulation for each gene as the concentration and/or time increased. Testisin was the focus of the gene expression analysis. Testisin is epigenetically silenced in testicular germ cell tumors (TGCT) by DNA methylation at the 5’CpG island of the gene. To investigate if MEHP is capable of DNA hypermethylation, a co-exposure with 5-azacytidine (demethylating agent) was conducted. Compared with the 5-azacytidine treatment alone, there was a significant down-regulation of the Testisin gene in the co-exposure. This suggests that MEHP may down-regulate Testisin gene expression by DNA methylation. These findings provide evidence that MEHP can alter the expression of Testisin, GSTP1 and MGMT, genes that are associated in the risk of developing testicular germ cell tumors. In addition, results indicated that MEHP may cause DNA methylation leading to the down-regulation/silencing of genes such as Testisin.

Page generated in 0.0756 seconds