• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 6
  • 6
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 85
  • 85
  • 21
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Germ cell determination and the developmental origin of germ cell tumors

Nicholls, Peter, Page, D.C. 15 December 2023 (has links)
Yes / In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs. / This work was supported by the Howard Hughes Medical Institute where D.C.P. is an Investigator, and the Frontier Research Program from the Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology. P.K.N. is a recipient of the Hope Funds for Cancer Research Fellowship (HFCR-15-06-06) and an Early Career Fellowship from the National Health and Medical Research Council, Australia (GNT1053776).
2

Fetal germ cell development in the rat testis and the impact of di (n-Butyl) phthalate exposure

Jobling, Matthew S. January 2010 (has links)
During gonad development and fetal life, the germ cells (GC) undergo a range of different developmental processes necessary for correct postnatal gametogenesis and the production of the next generation. If these fetal events are disrupted by genetic or environmental factors, there could be severe consequences that may not present until adulthood. This is of particular importance in relation to human testicular GC tumours (TGCT), the most common cancer of young men, as TGCT is thought to arise from fetal GCs that have failed to differentiate normally during development and thus persist into adulthood, eventually becoming tumourigenic. TGCT is one of several related disorders of male reproductive health thought to comprise a Testicular Dysgenesis Syndrome (TDS), in which faulty testis development in fetal life may predispose to the development of cryptorchidism, hypospadias, reduced sperm count and TGCT. Currently there is no accepted animal model for TGCT, but some insight into human TDS has been gained through the use of a rat model using in utero Di (n-Butyl) Phthalate (DBP) exposure to induce cryptorchidism, hypospadias, low sperm count and reduced fertility (but not TGCT). However, a previous study suggested that DBP exposure can disrupt GC differentiation, resulting in significantly reduced GC number prior to birth and postnatal consequences. This thesis has been directed at investigating the normal process of GC development in the fetal rat and how this is altered by DBP exposure; such understanding may give insights into the origins of human TGCT by showing how and when disruption of normal fetal GC differentiation can occur. The first objective was to characterise GC development in both the rat testis and ovary to understand the normal events that occur between embryonic day (e)13.5 and e21.5, as most data in the literature is based on the mouse. Analysis by immunohistochemical, stereological and mRNA expression indentified that during this time period, a GC will undergo a dynamic sequence of changes involving migration, proliferation followed by differentiation (manifested by loss of specific protein markers), whilst undergoing germ-line specific remethylation. Whilst whole gonad development is vastly different between testes and ovaries, GC development was broadly the same with only minor differences up to the point where GCs in the ovary enter meiosis. Having established the normal process of GC development in the fetal rat testis, the effects of in utero DBP exposure was then investigated. DBP exposure reduced GC number at all ages investigated even after only 24 hours of exposure and simultaneously prolonged GC proliferation. As apoptosis was unaltered by DBP exposure, the consistent reduction in GC number was suggested to be due to an initial reduction in GC number that does not recover to control levels. GC differentiation was assessed by the expression and localization of specific protein markers (OCT4, DMRT1 and DAZL). The pattern of expression of OCT4 and DMRT1 was altered by DBP exposure. GCs in DBP exposed animals also showed a delay in disaggregation from within the centre of seminiferous cords. These results suggested that a delay in GC differentiation was occurring with DBP exposure. This delay in GC development persisted into early postnatal life, following cessation of DBP exposure. Thus at postnatal day (D)6, GC specific re-expression of DMRT1, GC migration to the basal lamina and resumption of GC proliferation all showed a delay. DBP also induced an increase in the presence of multinucleated gonocytes. DNA methylation in the fetal rat testis was also investigated as a mechanism that could be disrupted by DBP exposure. DNA methylation of GCs increased during the last week of fetal life by global methylation of the GC genome and the increased expression of DNA methyl transferases. No effect of DBP exposure was detected. Inhibition of methylation by 5-aza-2’deoxycytidine was then investigated as a way to block GC differentiation in fetal rat testes and this resulted in a similar transient delay in GC differentiation but was perinatally lethal to the fetus. Bisulphite sequencing of the OCT4 promoter was also performed but proved inconclusive. Methylation patterns may be being altered by DBP exposure, but such changes could not be identified in this thesis. To complement the in vivo DBP exposure studies, an in vitro testis explant system using e14.5 testes was investigated. These in vitro testis explants showed some GC effects with MBP, the active metabolite of DBP, and also suggested a novel role for Hedgehog signalling in GC survival in the fetal rat testis. The studies in this thesis have characterised several aspects of fetal GC development in the rat and identified which of these are affected by DBP exposure, resulting in a delay in GC development. As DBP exposure delays but does not block GC differentiation, this may explain why TGCT is not induced in the DBP exposure rat model for TDS.
3

Further evidence for the rodent bone marrow micronucleus assay acting as a sensitive predictor of the possible germ cell mutagenicity of chemicals

Brinkworth, Martin H., Ashby, J., Tinwell, H. January 2001 (has links)
No / Further evidence for the rodent bone marrow micronucleus assay acting as a sensitive predictor of the possible germ cell mutagenicity of chemicals
4

Advancing clinical and translational research in germ cell tumours (GCT): recommendations from the Malignant Germ Cell International Consortium

Fonseca, A., Lobo, J., Hazard, F.K., Gell, J., Nicholls, Peter, Weiss, R.S., Klosterkemper, L., Volchenboum, S.L., Nicholson, J.C., Frazier, A.L., Amatruda, J.F., Bagrodia, A., Lockley, M., Murray, M.J. 15 December 2023 (has links)
Yes / Germ cell tumours (GCTs) are a heterogeneous group of rare neoplasms that present in different anatomical sites and across a wide spectrum of patient ages from birth through to adulthood. Once these strata are applied, cohort numbers become modest, hindering inferences regarding management and therapeutic advances. Moreover, patients with GCTs are treated by different medical professionals including paediatric oncologists, neuro-oncologists, medical oncologists, neurosurgeons, gynaecological oncologists, surgeons, and urologists. Silos of care have thus formed, further hampering knowledge dissemination between specialists. Dedicated biobank specimen collection is therefore critical to foster continuous growth in our understanding of similarities and differences by age, gender, and site, particularly for rare cancers such as GCTs. Here, the Malignant Germ Cell International Consortium provides a framework to create a sustainable, global research infrastructure that facilitates acquisition of tissue and liquid biopsies together with matched clinical data sets that reflect the diversity of GCTs. Such an effort would create an invaluable repository of clinical and biological data which can underpin international collaborations that span professional boundaries, translate into clinical practice, and ultimately impact patient outcomes. / ALF, JFA, and MJM declare funding from St Baldrick’s Foundation; grant reference number 358099.
5

The critical role of oxidative stress in diethylstilbestrol induced male germ cell apoptosis

Habas, Khaled S.A., Brinkworth, Martin H., Anderson, Diana January 2017 (has links)
No
6

Germ cell development in the human and marmoset fetal testis and the origins of testicular germ cell tumours

Mitchell, Roderick T. January 2010 (has links)
Normal germ cell development in the human testis is crucial for subsequent fertility and reproductive health. Disruption of testis development in fetal life can result in deleterious health consequences such as testicular dysgenesis syndrome (TDS), which includes disorders, such as cryptorchidism, hypospadias, infertility and testicular germ cell tumours (TGCT). A rat model of TDS in which rats are exposed to phthalates in utero has been validated, but does result in the development of TGCT. In humans, TGCTs result from transformation of pre-neoplastic carcinoma in-situ (CIS) cells and these CIS cells are believed to arise from human fetal germ cells during their transition from gonocyte to spermatogonia, based on their morphology and protein expression profile. It has been proposed asynchronous differentiation of germ cells in the human fetal testis may predispose fetal germ cells to become CIS cells. Studying the development of these tumours in humans is difficult because of their fetal origins and prolonged duration from initiation of impaired development to invasive disease. For this reason the use of relevant animal models that can mimic normal and abnormal germ cell development may provide new insight into how TGCT develop. The Common Marmoset monkey, a New World primate exhibits many similarities to the human in terms of reproductive biology and could represent such a model. This thesis aimed to further characterise the origins of CIS cells in the human testis by investigating the protein expression profile of CIS cells in patients with TGCT and comparing them to established markers of human fetal germ cell types using immunohistochemistry and immunofluorescence. Quantification of the various subpopulations of CIS and proliferation within these populations was performed. The thesis also investigated the Common Marmoset monkey as a potential model of normal testis and germ cell development by comparing the differentiation and proliferation profile of germ cells with those of the human during fetal and early postnatal life. During the present studies methods were successfully developed that enabled us to use testicular xenografts to recapitulate normal development of immature testes from marmoset and human. This involved grafting pieces of testis tissue subcutaneously under the dorsal skin of immunodeficient mice and retrieving them several weeks later to investigate their development during the grafting period. Xenografts using tissue from fetal, neonatal and juvenile marmosets were performed in addition to testes from first and second trimester human fetuses. Finally the present studies aimed to use the marmoset and the xenografting approach as systems in which to examine the effects of gonadotrophin suppression and phthalate treatment on germ cell differentiation and proliferation, with particular attention to the potential for development of CIS and TGCT. Heterogeneous phenotypes of CIS cells were identified, mostly consistent with those seen in the normal human fetal testis, however some of these CIS cells did not exhibit the same phenotype as germ cells identified in normal fetal testes. In addition it was shown that some of the proteins considered to be ‘classical’ markers of CIS cells, such as the pluripotent transcription factor OCT4, were not expressed in a proportion of the CIS cells. The proliferation index of CIS cells is also significantly higher in those subpopulations with the most ‘undifferentiated’ phenotype (i.e. OCT4+/VASA-). The present studies have generated novel data showing that the marmoset is a good model of fetal and neonatal germ cell development, with similarities to the human in terms of an asynchronous and prolonged period of differentiation and proliferation of germ cells from gonocyte to spermatogonia. This feature is also common to the human, but not a characteristic of the rodent. Fetal, neonatal and pre-pubertal germ cell development can be re-capitulated by xenografting tissue from marmoset and human testes into nude mouse hosts. Human fetal testis grafts produced testosterone and were responsive to hCG stimulation. First trimester human testis xenografts that have not developed fully formed seminiferous cords prior to grafting can complete the process of cord formation whilst grafted in host mice. In addition, germ cells in fetal human and marmoset xenografts can differentiate and proliferate in a similar manner to that seen in the intact non-grafted testis. In the intact neonatal marmoset, suppression of gonadotrophins resulted in a 30% decrease in proliferation, however differentiation of gonocytes is not affected. In-utero treatment of neonatal marmosets with mono-n-butyl phthalate was associated with unusual ‘gonocyte’ clusters, however, di-n-butyl phthalate treatment of mice carrying fetal marmoset xenografts resulted in no visible effects on germ cell differentiation or proliferation and did not result in the development of CIS or TGCT. In conclusion, this thesis has shown that there are many subpopulations of CIS cells of which many have not been previously described. These subpopulations have different characteristics, such as variable proliferation rates and this may indicate the potential for progression or invasiveness. These subpopulations have similar protein expression phenotypes to normal human fetal germ cells although the present studies have identified some CIS cells with phenotypes that are not found in the normal human testis. This thesis has demonstrated that the marmoset is a comparable model to the human in terms of asynchronous fetal germ cell development, which may predispose this species to the development of CIS/TGCT. In addition to the use of intact marmosets, these studies have also demonstrated for the first time that testis xenografting provides a comparable system for testis cord formation, germ cell differentiation and proliferation in fetal/postnatal marmosets and fetal human testis. In addition the marmoset and xenografting models have indicated that phthalates may have minor effects on testis development in the human and marmoset but do not result in CIS or TGCT. These model systems are suitable for further investigation of normal and disrupted testis development.
7

The study and manipulation of piglet gonocytes

Yang, Yanfei 16 March 2011
The studies in this thesis examined piglet gonocyte identification, isolation, purification, preservation and potential for initiation of spermatogenesis after transplantation into irradiated recipient testes. As a first step, we characterized a previously non-described auto-fluorescence in the piglet testis tissue. This auto-fluorescence mainly originated from granules among the testis interstitial cells, and we found that its interference with immuno-fluorescence can be overcome using Sudan black staining. We also showed that porcine gonocytes can be specifically labelled with the lectin Dolichos biflorus agglutinin (DBA). To optimize gonocyte isolation, we found that ~9-fold more live cells could be harvested by enzymatic digestion of testis tissues than with mechanical methods. However, the proportion of gonocytes (~7%) did not differ between the mechanical and enzymatic methods of testis cell isolation. We then developed a novel three-step strategy for isolation of gonocytes by combining enzymatic digestion and vortexing, resulting in a gonocyte proportion of ~40% (~5-fold more than that from conventional methods). For short-term preservation of testis cells, we found that the survival of testis cells under hypothermic conditions was dependent on the cell type, and affected by storage duration, temperature and medium used. More than 80% of live testis cells survived the 6-day hypothermic preservation period in 20% FBS-L15, without visible changes to the cell culture potential or gonocyte proportion. In another experiment where testis tissues were maintained under hypothermic conditions, we found that ~25% of testis cells could survive for 6 days if preserved in HypoThermosol-FRS solution (HTS-FRS), without morphological changes. To purify gonocytes, we showed that centrifugation of testis cells using 17% Nycodenz can lead to precipitation of gonocytes in pellets (with a purity of > 80%). We also found that pre-coating tissue culture plates with both fibronectin and poly-D-lysine can result in the negative selection of gonocytes (with a purity of up to 85%). We subsequently showed that further purification of gonocytes (to > 90%) could be achieved by combining the two latter approaches. To prepare recipients for germ cell transplantation, we used local irradiation of piglet testes which reduced testis growth, decreased seminiferous tubule diameters and completely eliminated spermatogenesis at 4 months post-irradiation. Compared with the absence of endogenous spermatogenesis in the control testes, spermatogenesis up to elongating spermatids was observed in the irradiated testes after gonocyte transplantation. In summary, we investigated several critical elements in the study and manipulation of gonocytes in a large animal model.
8

The study and manipulation of piglet gonocytes

Yang, Yanfei 16 March 2011 (has links)
The studies in this thesis examined piglet gonocyte identification, isolation, purification, preservation and potential for initiation of spermatogenesis after transplantation into irradiated recipient testes. As a first step, we characterized a previously non-described auto-fluorescence in the piglet testis tissue. This auto-fluorescence mainly originated from granules among the testis interstitial cells, and we found that its interference with immuno-fluorescence can be overcome using Sudan black staining. We also showed that porcine gonocytes can be specifically labelled with the lectin Dolichos biflorus agglutinin (DBA). To optimize gonocyte isolation, we found that ~9-fold more live cells could be harvested by enzymatic digestion of testis tissues than with mechanical methods. However, the proportion of gonocytes (~7%) did not differ between the mechanical and enzymatic methods of testis cell isolation. We then developed a novel three-step strategy for isolation of gonocytes by combining enzymatic digestion and vortexing, resulting in a gonocyte proportion of ~40% (~5-fold more than that from conventional methods). For short-term preservation of testis cells, we found that the survival of testis cells under hypothermic conditions was dependent on the cell type, and affected by storage duration, temperature and medium used. More than 80% of live testis cells survived the 6-day hypothermic preservation period in 20% FBS-L15, without visible changes to the cell culture potential or gonocyte proportion. In another experiment where testis tissues were maintained under hypothermic conditions, we found that ~25% of testis cells could survive for 6 days if preserved in HypoThermosol-FRS solution (HTS-FRS), without morphological changes. To purify gonocytes, we showed that centrifugation of testis cells using 17% Nycodenz can lead to precipitation of gonocytes in pellets (with a purity of > 80%). We also found that pre-coating tissue culture plates with both fibronectin and poly-D-lysine can result in the negative selection of gonocytes (with a purity of up to 85%). We subsequently showed that further purification of gonocytes (to > 90%) could be achieved by combining the two latter approaches. To prepare recipients for germ cell transplantation, we used local irradiation of piglet testes which reduced testis growth, decreased seminiferous tubule diameters and completely eliminated spermatogenesis at 4 months post-irradiation. Compared with the absence of endogenous spermatogenesis in the control testes, spermatogenesis up to elongating spermatids was observed in the irradiated testes after gonocyte transplantation. In summary, we investigated several critical elements in the study and manipulation of gonocytes in a large animal model.
9

Detection of phase specificity of in vivo germ cell mutagens in an in vitro germ cell system

Habas, Khaled S.A., Anderson, Diana, Brinkworth, Martin H. 04 April 2016 (has links)
yes / In vivo tests for male reproductive genotoxicity are time consuming, resource-intensive and their use should be minimised according to the principles of the 3Rs. Accordingly, we investigated the effects in vitro, of a variety of known, phase-specific germ cell mutagens, i.e. pre-meiotic, meiotic, and post-meiotic genotoxins, on rat spermatogenic cell types separated using Staput unit-gravity velocity sedimentation, evaluating DNA damage using the Comet assay. N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) (spermatogenic phase), 6-mercaptopurine (6-MP) and 5-bromo-2'-deoxy-uridine (5-BrdU) (meiotic phase), methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) (post-meiotic phase) were selected for use as they are potent male rodent, germ cell mutagens in vivo. DNA damage was detected directly using the Comet assay and indirectly using the TUNEL assay. Treatment of the isolated cells with ENU and MNU produced the greatest concentration-related increase in DNA damage in spermatogonia. Spermatocytes were most sensitive to 6-MP and 5-BrdU while spermatids were particularly susceptible to MMS and EMS. Increases were found when measuring both Olive tail moment (OTM) and % tail DNA, but the greatest changes were in OTM. Parallel results were found with the TUNEL assay, which showed highly significant, concentration dependent effects of all these genotoxins on spermatogonia, spermatocytes and spermatids in the same way as for DNA damage. The specific effects of these chemicals on different germ cell types matches those produced in vivo. This approach therefore shows potential for use in the detection of male germ cell genotoxicity and could contribute to the reduction of the use of animals in such toxicity assays.
10

Bone morphogenetic proteins in human embryonal carcinoma cells

Qualtrough, John David January 1998 (has links)
No description available.

Page generated in 0.0672 seconds