• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nucleosynthesis and s-process element formation in giant stars

Wylie, Elizabeth Claire January 2006 (has links)
A thorough understanding of nucleosynthesis and element formation in stars of all evolutionary phases is of vital importance in stellar astrophysics. It provides information about internal structure, conditions and nuclear processes occurring in the stellar interior. The heavy elements formed in a star throughout its life are returned to the interstellar medium through mass loss processes. New populations of stars are then formed from this previously enriched material. This continues the cycle of element recycling in the Universe and has great consequence for galactic chemical evolution. As both modelling and observing techniques advance, more surveys are required to ensure there is agreement between the two. It is hoped that when a thorough understanding of the internal processes in giant stars is reached, the evolutionary models will reproduce the observed elemental yields. This work provides an internally self-consistent analysis of the element abundances produced via nucleosynthesis and s-process element formation occurring in giant stars in different stellar environments. High resolution spectroscopic observations have been taken of Asymptotic Giant Branch (AGB) and Red Giant Branch (RGB) stars in three different stellar environments. Spectrum synthesis has been used to determine s-process element abundances for RGB stars in the Hyades open cluster, RGB and AGB stars in the globular cluster, 47 Tucanae, and AGB stars in the galactic field. It was found that the two Hyades giant studied showed solar, or near-solar, abundances of s-process elements. Enhancements in the light s-process elements, Y and Zr, of +0.02 to +0.11 were observed, while enhancements in the heavy s-process elements, La, Pr and Nd, ranged from +0.06 to +0.16. These results are consistent with previous findings of enhancements in Y of ~+0.12, and of ~+0.15 for the heavy s-process elements. The results from 47 Tucanae suggest a genuine star-to-star scatter in the s-process element abundances in the giant stars of this globular cluster. This is unexpected due to the fact that stars in a globular cluster are thought to have the same formation and chemical history. However, spreads in s-process element abundances of as much as +-0.7 dex are observed between this study and three other studies of similar stars in the same cluster. A range of field stars along the AGB phase, ranging from M to MS to S to SC, have been analysed for s-process enrichment. The observed element abundances are compared with those predicted by recent modelling of the AGB phase of evolution. Enhancements in s-process element abundances range from [s/Fe]~0.00 for M stars, to ~+0.50 for MS stars, through to ~+0.95 for S stars. The comparison of these enhancements with those predicted by modelling provides an indication of the success of these models and will enable theoreticians to further refine their understanding of the internal nucleosynthetic processes present in giant stars.
2

Spectropolarimetry as a probe of stellar winds

Harries, Timothy James January 1995 (has links)
No description available.
3

Nucleosynthesis and s-process element formation in giant stars

Wylie, Elizabeth Claire January 2006 (has links)
A thorough understanding of nucleosynthesis and element formation in stars of all evolutionary phases is of vital importance in stellar astrophysics. It provides information about internal structure, conditions and nuclear processes occurring in the stellar interior. The heavy elements formed in a star throughout its life are returned to the interstellar medium through mass loss processes. New populations of stars are then formed from this previously enriched material. This continues the cycle of element recycling in the Universe and has great consequence for galactic chemical evolution. As both modelling and observing techniques advance, more surveys are required to ensure there is agreement between the two. It is hoped that when a thorough understanding of the internal processes in giant stars is reached, the evolutionary models will reproduce the observed elemental yields. This work provides an internally self-consistent analysis of the element abundances produced via nucleosynthesis and s-process element formation occurring in giant stars in different stellar environments. High resolution spectroscopic observations have been taken of Asymptotic Giant Branch (AGB) and Red Giant Branch (RGB) stars in three different stellar environments. Spectrum synthesis has been used to determine s-process element abundances for RGB stars in the Hyades open cluster, RGB and AGB stars in the globular cluster, 47 Tucanae, and AGB stars in the galactic field. It was found that the two Hyades giant studied showed solar, or near-solar, abundances of s-process elements. Enhancements in the light s-process elements, Y and Zr, of +0.02 to +0.11 were observed, while enhancements in the heavy s-process elements, La, Pr and Nd, ranged from +0.06 to +0.16. These results are consistent with previous findings of enhancements in Y of ~+0.12, and of ~+0.15 for the heavy s-process elements. The results from 47 Tucanae suggest a genuine star-to-star scatter in the s-process element abundances in the giant stars of this globular cluster. This is unexpected due to the fact that stars in a globular cluster are thought to have the same formation and chemical history. However, spreads in s-process element abundances of as much as +-0.7 dex are observed between this study and three other studies of similar stars in the same cluster. A range of field stars along the AGB phase, ranging from M to MS to S to SC, have been analysed for s-process enrichment. The observed element abundances are compared with those predicted by recent modelling of the AGB phase of evolution. Enhancements in s-process element abundances range from [s/Fe]~0.00 for M stars, to ~+0.50 for MS stars, through to ~+0.95 for S stars. The comparison of these enhancements with those predicted by modelling provides an indication of the success of these models and will enable theoreticians to further refine their understanding of the internal nucleosynthetic processes present in giant stars.
4

Exploration of s-process elemental abundances in globular cluster stars using medium- and high-resolution spectra.

Worley, Charlotte Clare January 2009 (has links)
This thesis has used medium- and high-resolution spectral data to derive elemental abundances, in particular light and heavy s-process elemental abundances, for groups of giant stars in the globular clusters 47 Tuc, NGC 6388 and NGC 362. These analyses were undertaken using both curve-of-growth and spectrum synthesis techniques. The techniques were calibrated with respect to the metal-poor giant star Arcturus in order to reduce systematic errors in the analysis process. A feasibility study was undertaken that compared synthetic spectra at different resolutions throughout the colour-magnitude diagram (CMD) of a metal-rich ([Fe/H] = -0.5 dex) globular cluster. This study identified where on the CMD light and heavy s-process elemental abundances could be derived at medium resolution (R ~ 10,000). Abundance analyses could be undertaken on the giant branches down to just below the horizontal branch and then again on the main sequence below Teff ~ 4500 K. At all other places on the CMD high-resolution spectra (R ~ 30,000) are required to derive these abundances. Performance verification data at R ~ 5,000$ was obtained using the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) and showed that there were no large scale s-process elemental abundance variations in 47 Tuc giant branch stars. The level of precision in this preliminary data was [X/Fe] ~ 0.5dex. A resolution of R ~ 10,000 should be achievable with SALT RSS in the future which will improve this limit. The AAOmega survey of 47 Tuc stars at R ~ 6,500 was more promising in certain aspects of elemental abundance determination. The observed wavelengths included the key features of CN and CH molecular bands, and light (Z < 30) and heavy (38 < Z < 63) element spectral lines. CN indices were measured and calibrated to previous results. The well-known CN bimodality was observed in the 47 Tuc stars, as well as a radial gradient in CN strength. A preliminary subset of ten of the survey stars have undergone an abundance analysis for which the abundances of Fe, Si, and Ca were found to be homogeneous within this cluster. The Na abundances had a large range in values that were observed to correlate with CN strength. The s-process elemental abundance results were inconclusive. The Zr abundances showed little to no enhancement in the sample and the Ba abundances varied considerably due to strong lines of Ba II being extremely sensitive to microturbulence. Various high-resolution studies were carried out using spectra of giant stars in 47 Tuc, NGC 6388 and NGC 362 observed on the Australian National Observatory (ANO) 2.3 m echelle spectrograph and the Ultra-Violet Echelle Spectrograph (UVES) on the Very Large Telescope (VLT). The high-resolution analysis of 47 Tuc giant star Lee 2525 found an enhanced Zr abundance in this star which resolved a discrepancy between two previous 47 Tuc elemental abundance studies (Brown & Wallerstein 1992; Wylie et al. 2006). The stars in the VLT dataset that were analysed here included five giant branch stars in 47 Tuc, two in NGC 6388 and thirteen in NGC 362. The low temperatures and gravities of these stars caused departures from local thermodynamic equilibrium in low excitation potential neutral species, particularly Fe and Zr, that needed to be taken into account before reliable stellar parameters and elemental abundances could be determined for these stars. Veiling effects due to circumstellar dust were postulated to have produced artificially low metallicities for the infra-red excess stars in this sample, particularly for the 47 Tuc stars. The element abundance analyses of 47 Tuc, NGC 6388 and NGC 362 stars found the derived metallicities to be homogeneous for each cluster (<[Fe/H]>(47Tuc) = -0.88 +/- 0.09 dex; <[Fe/H]>(NGC6388) = -0.60 +/- 0.06 dex; <[Fe/H]>(NGC362) = -1.21 +/- 0.08 dex). The 47 Tuc sample included Lee 2525 and the five VLT stars. The derived metallicities were in reasonable agreement with previously reported values. The light (ls) and heavy (hs) s-process element abundances were enhanced and homogeneous in the stars of each cluster. The abundances determined for 47 Tuc and NGC 6388 were in good agreement, reflecting the similarity in metallicity of the stars in these two clusters (<[ls/Fe]>(47Tuc) = +0.53 +/- 0.02 dex; <[hs/Fe]>(47Tuc) = +0.40 +/- 0.06 dex; <[ls/Fe]>(NGC6388) = +0.58 +/- 0.13 dex; <[hs/Fe]>(NGC6388) = +0.39 +/- 0.07 dex). The more metal-poor cluster NGC 362 was less enhanced in ls elemental abundances and slightly more enhanced in hs elemental abundances (<[ls/Fe]>(NGC362) = +0.32 +/- 0.10 dex, <[hs/Fe]>(NGC362) = +0.46 +/- 0.09 dex). The clear enhancement in the s-process elemental abundances and homogeneity in the results for each globular cluster is evidence that these stars have been enhanced extrinsically in s-process elements. Pollution events in the history of each cluster has resulted in the abundance distribution in both the light elements and the heavy elements that has been observed in the stars analysed in this thesis. The enhancements in Na, ls and hs elemental abundances favours intermediate mass AGB stars as the source of the pollution.
5

Exploration of s-process elemental abundances in globular cluster stars using medium- and high-resolution spectra.

Worley, Charlotte Clare January 2009 (has links)
This thesis has used medium- and high-resolution spectral data to derive elemental abundances, in particular light and heavy s-process elemental abundances, for groups of giant stars in the globular clusters 47 Tuc, NGC 6388 and NGC 362. These analyses were undertaken using both curve-of-growth and spectrum synthesis techniques. The techniques were calibrated with respect to the metal-poor giant star Arcturus in order to reduce systematic errors in the analysis process. A feasibility study was undertaken that compared synthetic spectra at different resolutions throughout the colour-magnitude diagram (CMD) of a metal-rich ([Fe/H] = -0.5 dex) globular cluster. This study identified where on the CMD light and heavy s-process elemental abundances could be derived at medium resolution (R ~ 10,000). Abundance analyses could be undertaken on the giant branches down to just below the horizontal branch and then again on the main sequence below Teff ~ 4500 K. At all other places on the CMD high-resolution spectra (R ~ 30,000) are required to derive these abundances. Performance verification data at R ~ 5,000$ was obtained using the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT) and showed that there were no large scale s-process elemental abundance variations in 47 Tuc giant branch stars. The level of precision in this preliminary data was [X/Fe] ~ 0.5dex. A resolution of R ~ 10,000 should be achievable with SALT RSS in the future which will improve this limit. The AAOmega survey of 47 Tuc stars at R ~ 6,500 was more promising in certain aspects of elemental abundance determination. The observed wavelengths included the key features of CN and CH molecular bands, and light (Z < 30) and heavy (38 < Z < 63) element spectral lines. CN indices were measured and calibrated to previous results. The well-known CN bimodality was observed in the 47 Tuc stars, as well as a radial gradient in CN strength. A preliminary subset of ten of the survey stars have undergone an abundance analysis for which the abundances of Fe, Si, and Ca were found to be homogeneous within this cluster. The Na abundances had a large range in values that were observed to correlate with CN strength. The s-process elemental abundance results were inconclusive. The Zr abundances showed little to no enhancement in the sample and the Ba abundances varied considerably due to strong lines of Ba II being extremely sensitive to microturbulence. Various high-resolution studies were carried out using spectra of giant stars in 47 Tuc, NGC 6388 and NGC 362 observed on the Australian National Observatory (ANO) 2.3 m echelle spectrograph and the Ultra-Violet Echelle Spectrograph (UVES) on the Very Large Telescope (VLT). The high-resolution analysis of 47 Tuc giant star Lee 2525 found an enhanced Zr abundance in this star which resolved a discrepancy between two previous 47 Tuc elemental abundance studies (Brown & Wallerstein 1992; Wylie et al. 2006). The stars in the VLT dataset that were analysed here included five giant branch stars in 47 Tuc, two in NGC 6388 and thirteen in NGC 362. The low temperatures and gravities of these stars caused departures from local thermodynamic equilibrium in low excitation potential neutral species, particularly Fe and Zr, that needed to be taken into account before reliable stellar parameters and elemental abundances could be determined for these stars. Veiling effects due to circumstellar dust were postulated to have produced artificially low metallicities for the infra-red excess stars in this sample, particularly for the 47 Tuc stars. The element abundance analyses of 47 Tuc, NGC 6388 and NGC 362 stars found the derived metallicities to be homogeneous for each cluster (<[Fe/H]>(47Tuc) = -0.88 +/- 0.09 dex; <[Fe/H]>(NGC6388) = -0.60 +/- 0.06 dex; <[Fe/H]>(NGC362) = -1.21 +/- 0.08 dex). The 47 Tuc sample included Lee 2525 and the five VLT stars. The derived metallicities were in reasonable agreement with previously reported values. The light (ls) and heavy (hs) s-process element abundances were enhanced and homogeneous in the stars of each cluster. The abundances determined for 47 Tuc and NGC 6388 were in good agreement, reflecting the similarity in metallicity of the stars in these two clusters (<[ls/Fe]>(47Tuc) = +0.53 +/- 0.02 dex; <[hs/Fe]>(47Tuc) = +0.40 +/- 0.06 dex; <[ls/Fe]>(NGC6388) = +0.58 +/- 0.13 dex; <[hs/Fe]>(NGC6388) = +0.39 +/- 0.07 dex). The more metal-poor cluster NGC 362 was less enhanced in ls elemental abundances and slightly more enhanced in hs elemental abundances (<[ls/Fe]>(NGC362) = +0.32 +/- 0.10 dex, <[hs/Fe]>(NGC362) = +0.46 +/- 0.09 dex). The clear enhancement in the s-process elemental abundances and homogeneity in the results for each globular cluster is evidence that these stars have been enhanced extrinsically in s-process elements. Pollution events in the history of each cluster has resulted in the abundance distribution in both the light elements and the heavy elements that has been observed in the stars analysed in this thesis. The enhancements in Na, ls and hs elemental abundances favours intermediate mass AGB stars as the source of the pollution.
6

Kinematics and dynamics pf giant stars in the solar neighbourhood

Famaey, Benoît 29 September 2004 (has links)
We study the motion of giant stars in the Solar neighbourhood and what they tell us about the dynamics of the Galaxy: we thus contribute to the huge project of understanding the structure and evolution of the Galaxy as a whole. <p><p>We present a kinematic analysis of 5952 K and 739 M giant stars which includes for the first time radial velocity data from an important survey performed with the CORAVEL spectrovelocimeter at the Observatoire de Haute Provence. Parallaxes from the Hipparcos catalogue and proper motions from the Tycho-2 catalogue are also used.<p><p>A maximum-likelihood method, based on a bayesian approach, is applied to the data, in order to make full use of all the available stars, and to derive the kinematic properties of the subgroups forming a rich small-scale structure in velocity space. Isochrones in the Hertzsprung-Russell diagram reveal a very wide range of ages for stars belonging to these subgroups, which are thus most probably related to the dynamical perturbation by transient spiral waves rather than to cluster remnants. A possible explanation for the presence of young group/clusters in the same area of velocity space is that they have been put there by the spiral wave associated with their formation, while the kinematics of the older stars of our sample has also been disturbed by the same wave. The emerging picture is thus one of "dynamical streams" pervading the Solar neighbourhood and travelling in the Galaxy with a similar spatial velocity. The term "dynamical stream" is more appropriate than the traditional term "supercluster" since it involves stars of different ages, not born at the same place nor at the same time. We then discuss, in the light of our results, the validity of older evaluations of the Solar motion in the Galaxy. <p><p>We finally argue that dynamical modeling is essential for a better understanding of the physics hiding behind the observed kinematics. An accurate axisymmetric model of the Galaxy is a necessary starting point in order to understand the true effects of non-axisymmetric perturbations such as spiral waves. To establish such a model, we develop new galactic potentials that fit some fundamental parameters of the Milky Way. We also develop new component distribution functions that depend on three analytic integrals of the motion and that can represent realistic stellar disks. / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished
7

Qualitative properties of radiation magnetohydrodynamics. / Qualitative properties of radiation magnetohydrodynamics.

Kobera, Marek January 2016 (has links)
We consider a simplified model based on the Navier-Stokes-Fourier system coupled to a transport equation and the Maxwell system, proposed to describe radiative flows in stars. We establish global- in-time existence for the associated initial-boundary value problem in the framework of weak solutions. Next, we study a hydrodynamical model describing the motion of internal stellar layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged, we include energy exchanges through radiative transfer and we assume that the system is steadily rotating. We analyze the singular limit of this system when the Mach number, the Alfven number, the Peclet number and the Froude number go to zero in a certain way and prove convergence to a 3D incompressible MHD system with a stationary linear transport equation for transport of radiation intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature corrector.
8

The Metallicity Structure of the Milky Way halo I : Creating a stellar catalogue of the distant halo’s red giants

Byström, Amanda January 2021 (has links)
The Milky Way's halo is an approximately spherical distribution of stars surrounding the Galaxy that carries the history of the Milky Way. The outer halo is a Galactic region with long dynamical timescales largely built up by accreted material. Probing its stellar constituents has been historically difficult due to the distances of outer halo stars, making them appear faint. To characterise the distant halo and unravel the history of our galaxy, we thus need to use stars that are intrinsically bright, i.e. giant stars. To draw useful conclusions about the distant halo, these target giants should have metallicity and kinematics information. Therefore a catalogue of distant halo giants with Pristine survey metallicities, Gaia mission data and distances has been created in this work. The cuts used to create this catalogue are made to remove as many dwarf stars as possible and have been tested on a training sample containing spectroscopic metallicities and surface gravities as well as Gaia mission data. Defining giants as being all stars with log(g) &lt; 3.5 dex, we can calculate the purity and completeness of the sample after the cuts have been applied to test which cuts optimise the catalogue. The methods used to cut away the dwarfs are to first plot all stars with positive Gaia parallaxes and fractional parallax uncertainties smaller than 50% in a colour-absolute magnitude diagram and remove all stars from the sample that in this plot populate the main sequence. We then colour-code the colour-apparent magnitude diagram by purity and completeness after this parallax cut has been performed, and select a region in this diagram in which both purity and completeness are maximised, with the final region being (GBP,0 - GRP,0) &gt; 0.8 and G0 &lt; 17.6. The distances to the stars in this region are then computed by comparing their apparent magnitudes to the absolute ones of isochrones. These cuts are then applied to a sample of 6,884,547 stars with Pristine survey and Gaia mission data. The final catalogue is kinematically unbiased and contains 345,303 halo giants. It contains 78% giants and only 4% of giants are erroneously deselected.  With the final sample we are able to probe as deep as 103 kpc into the halo and have created preliminary metallicity distribution functions of different regions of the halo. This sample will be used to further investigate the distant halo metallicity structure and its substructure that was created through merger events.
9

Dynamik magnetischer Flussröhren in Riesensternen und engen Doppelsternen / Dynamics of magnetic flux tubes in giant stars and close binary stars

Holzwarth, Volkmar 09 July 2002 (has links)
No description available.
10

Asteroseismic inferences from red-giant stars

Themeẞl, Nathalie 28 September 2018 (has links)
No description available.

Page generated in 0.072 seconds