Spelling suggestions: "subject:"glace"" "subject:"gland""
51 |
Comportements électriques des isolateurs standards IEEE recouverts de glace /Chafiq, Mourad. January 1995 (has links)
Mémoire (M.Eng.)--Université du Québec à Chicoutimi, 1995. / Résumé disponible sur Internet. CaQCU Document électronique également accessible en format PDF. CaQCU
|
52 |
Modélisation de la congélation d'un film fluide soumis à une précipitation surfondue /Zouzou, Nichet Alexandre, January 1996 (has links)
Mémoire (M.Eng.)--Université du Québec à Chicoutimi, 1996. / Document électronique également accessible en format PDF. CaQCU
|
53 |
Study of the influence of altitude on the characteristics of the electrical arc on polluted ice surface = L'étude de l'influence de l'altitude sur les caractéristiques de l'arc électrique à la surface de glace polluée /Li, Yu-Ku, January 2002 (has links)
Thèse(D.Eng.)-- Université du Québec à Chicoutimi, 2002. / Document électronique également accessible en format PDF. CaQCU
|
54 |
Finite element modeling of electric field distributions around a resistive glazed post station insulator covered with ice = Modélisation par éléments finis de la distribution du champ électrique autour d'un isolateur de poste avec une couche semi-conductrice recouvert de glace /Jaiswal, Vinay Kumar, January 2005 (has links)
Thèse (D.Ing.) -- Université du Québec à Chicoutimi, 2005. / Bibliogr.: f. 133-137. Document électronique également accessible en format PDF. CaQCU
|
55 |
A study on the Submerged Entry Nozzels (SEN) respecting clogging and decarburizationMemarpour, Arashk January 2010 (has links)
The submerged entry nozzle (SEN) has been used to transport the molten steel from tundish to the mould. The main purpose of the SEN usage is both to prevent oxygen and nitrogen pick-up by molten steel and to achieve the desired flow condition in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. Furthermore, the steelmaking processes occur at high temperatures around 1873 K so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during pre-heating and casting is necessary for the design of the steelmaking processes. The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during pre-heating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied in supplement 1. The results of the study indicated the penetration of the formed alkaline-rich glaze into the Alumina/graphite base refractory during pre-heating. More specifically, the alkaline-rich glaze reacts with graphite to form carbon monoxide gas. Thereafter, dissociation of CO at the SEN/molten metal interface takes place. This leads to reoxidation of dissolved REM (Rare Earth Metal), which form the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to a formation of a high-viscous alumina-rich glaze during the SEN pre-heating process. This in turn, creates a very uneven surface at the SEN internal surface. The “In Situ” formation of the REM oxides together with the uneven internal surface of the SEN may facilitate the accumulation of the primary inclusions. Supplement 1 revealed the disadvantages of the glass/silicon powder layer. On the other hand the carbon oxidation is a main industrial problem for un-coated Alumina/Graphite Submerged Entry Nozzles (SEN) during pre-heating. This led to the proposal of a new refractory material for the SEN. In supplement 2, the effect of ZrSi2 antioxidant and the coexistence of antioxidant additive and (4B2O3 ·BaO) glass powder on carbon oxidation were investigated at simulated non-isothermal heating conditions in a controlled atmosphere. Also, the effect of ZrSi2 antioxidant on carbon oxidation was investigated at isothermal temperatures at 1473 K and 1773 K. The specimens’ weight losses and temperatures were plotted versus time and compared to each others. The thickness of the oxide areas were measured and also examined using XRD, FEG-SEM and EDS. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina/Graphite base refractory materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by (4B2O3 ·BaO) glaze during green body sintering led to an excellent carbon oxidation resistance. In supplement 3, decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials constituting a commercial Submerged Entry Nozzle (SEN), have been investigated in different gas atmosphere consisting of CO2, O2 and Ar. The (CO2/O2) ratio values were kept the same as it is in propane combustion flue gas at Air Fuel Ratio (AFR) values equal to 1.5 and 1 for both Air-fuel and Oxygen-fuel combustions. Laboratory experiments were carried out non-isothermally in the temperature range 873 K to 1473 K at 15 K/min followed by isothermal heating at 1473 K for 60 min. The decarburization ratio (α) values of the three refractory types were determined by measuring the weight losses of the samples. The results showed that the decarburization ratio (α) values of the MgO-C refractory became 3.1 times higher for oxygen-fuel combustion compared to air-fuel combustion both at AFR equal to 1.5 in the temperature range 873 K to 1473 K. The decarburization ratio (α) values for Al2O3-C samples were the same as for the isothermal heating at 1473 K and non-isothermal heating in the temperature range 473 to 1773 K with a 15 K/min heating rate. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times instead of heating at lower temperatures for longer holding times. Jander’s diffusion model was proposed for estimating the decarburization rate of Al2O3-C refractory in the SEN. The activation energy for Al2O3-C samples heated at AFR equal to 1.5, for air-fuel and oxygen-fuel combustions were found to be 84.5 KJ/mol and 95.5 KJ/mol respectively during non-isothermal heating in the temperature range 873 K to 1473 K. / QC 20101008
|
56 |
An Experimental Study of Submerged Entry Nozzles (SEN) Focusing on Decarburization and CloggingMemarpour, Arashk January 2011 (has links)
The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs. / <p>QC 20111014</p>
|
57 |
An Experimental Study of Submerged Entry Nozzles (SEN) Focusing on Decarburization and CloggingMemarpour, Arashk January 2011 (has links)
The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.
|
58 |
Modélisation physique et numérique par la méthode des éléments finis de frontière de la distribution du potentiel et du champ électrique le long d'un isolateur standard de poste 735 KV recouvert de glace /Volat, Christophe, January 2002 (has links)
Thèse (D.Eng.)-- Université du Québec à Chicoutimi, 2002. / Document électronique également accessible en format PDF. CaQCU
|
59 |
Processo de desenvolvimento de produtos na indústria de revestimentos cerâmicos: estudo de caso em fabricantes que utilizam o processo de moagem a úmido, de moagem a seco e colorifícios.Romachelli, João Celso 20 December 2005 (has links)
Made available in DSpace on 2016-06-02T19:52:15Z (GMT). No. of bitstreams: 1
DissJCR.pdf: 3375786 bytes, checksum: 1a57425c9778203f1f18dbdb3bb55719 (MD5)
Previous issue date: 2005-12-20 / The increase of the competitiveness in the markets, demand products with high quality and that they are developed of form the one that the companies present fast cycle of
development, high performance, and low cost. Some tools of the production engineering are available of form to optimize and to become more previsible the happened results of the
process of development of products. An important aspect in the PDP, is the possible contribution of the supplier, combining itself since the stages initiates, of form to optimize
performance ace characteristic, to reduce risks and to optimize the innovative process. The ceramic tiles industry Brazilian particularly can be characterized by producers that use water process and dry process. The industry that uses the dried milling process has grown of significant form from the beginning of years 90, producing currently about 60% of the national production. The ceramic tiles industry historically uses the supplier as collaborating in the development of products. In Brazil more specifically the role played for
the suppliers of inputs for ceramic glazes is important.
Considering itself that the common suppliers are ace industries that use the dry process and the water process, this work effects an exploratory boarding on the process of development of products in the ceramic tiles industry. Case studies were done in seven companies tiles manufacturers and three glazes suppliers. One concludes that the industry independently of the competitive strategy, must structuralize and co-ordinate better the PDP preventing the extreme dependence of suppliers. And that the established scene privileges more than proportionally, the industry that uses dry process. / O aumento da competitividade nos mercados demanda produtos com alta qualidade e que sejam desenvolvidos de forma a que as empresas apresentem rápido ciclo de
desenvolvimento, alta performance e baixo custo. Várias ferramentas da engenharia de produção estão disponíveis de forma a otimizar e a tornar mais previsíveis os resultados
advindos do processo de desenvolvimento de produtos. Um aspecto importante no PDP é a possível colaboração do fornecedor, integrando-se desde as etapas inicias, de forma a
otimizar as características de desempenho, reduzir riscos e a otimizar o processo inovativo. A indústria de revestimentos cerâmicos, a brasileira, particularmente pode ser caracterizada
por produtores que utilizam o processo de moagem a úmido e processo de moagem a seco. A indústria que utiliza o processo de moagem a seco tem crescido de forma significativa a partir do inicio dos anos 90, produzindo atualmente cerca de 60% da produção nacional. A
indústria de revestimentos cerâmicos historicamente utiliza o fornecedor como colaborador no desenvolvimento de produtos. No Brasil mais especificamente é importante o papel
desempenhado pelos fornecedores de insumos para esmaltes denominados colorifícios. Considerando-se que os fornecedores são comuns ás indústrias que utilizam o processo de moagem a seco e moagem a úmido, este trabalho efetua uma abordagem exploratória sobre o processo de desenvolvimento de produtos na indústria de revestimentos cerâmicos brasileira. Foram realizados estudos de caso em sete empresas fabricantes de revestimentos e três colorificios. Conclui-se que a indústria independentemente da estratégia competitiva, deve estruturar e coordenar melhor o PDP evitando a excessiva dependência de fornecedores. E que o cenário estabelecido privilegia mais que proporcionalmente, a indústria que utiliza o processo de moagem a seco.
|
60 |
Etude en fretting usure sous hautes températures d'un contact Waspaloy/René125 : formation et stabilité des "glaze layers" / Study of Nickel based super-alloys under fretting wear sollicitations at high temperature : Glaze layer effectAlkelae, Fathia 18 May 2016 (has links)
Les alliages à base de Nickel constituent les meilleurs matériaux actuellement développés pour répondre aux sollicitations sous hautes températures dans les domaines de l’aéronautique du nucléaire etc… L’objectif de ce travail de thèse est d’étudier leur comportement en température sous sollicitations de fretting usure. Dans cette étude, on s’intéresse à un contact René125/Waspaloy représentatif d’une application aéronautique. Dans un premier temps nous avons étudié l’effet de la température. On montre qu’à partir de 400°C, l’interface génère la formation d’une glaze layer lubrifiante qui réduit considérablement la cinétique de l’usure. En fixant la température à 700°C (température de l’application industrielle), nous avons étudié la stabilité de ces couches protectrices vis-à-vis de la pression de contact, de l’amplitude de glissement, de la fréquence et du nombre de cycle appliqués. Cette analyse montre une évolution bilinéaire de l’usure avec une usure initiale rapide liée à la formation de la « glaze layer » puis une usure additionnelle quasiment nulle dès que la « glaze layer » est formée. Ces travaux montrent que le volume d’usure associée à la formation de la « glaze layer » est fonction de la vitesse de glissement. Au dessus d’une vitesse seuil de glissement, la formation de la « glaze layer » protectrice devient plus difficile. Une courbe maîtresse est ainsi établie. Des analyses chimiques des interfaces associées à des essais interrompus ont permis d’établir le scénario de formation de ces glaze layers. Pour finir, une étude comparative des revêtements développés dans le cadre du projet INNOLUB a été menée de façon à sélectionner le revêtement offrant les meilleures propriétés tribologiques pour l’application étudiée. / Nickel based alloys are the most developed materials nowadays for applications at high temperature, as in aeronautics, nuclear…The aim of this study is to understand their behavior at high temperature under fretting wear solicitations. Thereby, we had focused on a tribosystem formed of Waspaloy/René 125, which represent the crankcase/blade contact of the low pressure Turbine. We started studying the temperature effect, it is been noticed that above T = 400°C, a lubricant tribofilm, called the Glaze Layer is generated at the interface of the contact, which enable an abrupt reduction in friction and wear rate. The temperature was than fixed at 700°C (service temperature), so the glaze layer stability was analyzed as a function of contact pressure, sliding amplitude, frequency and number of cycles imposed. This analysis shows a bilinear wear evolution, characterized by a fast initial wear related to the formation of the glaze layer, followed by almost no wear once the glaze layer is formed. This study showed that the wear rate related to the glaze layer formation is dependent of the sliding velocity. Above a sliding velocity threshold, the formation of a stabilized glaze layer is quite difficult. A Master curve is here established. Microscopic and spectroscopic investigations are conducted to analyze the interface based on interrupted tests of a very short duration. Leading to a precise description of the glaze layer formation mechanisms. At the end of this study, a comparative analysis of different coatings developed to improve these components behavior, in the framework of INNOLUB project was established, allowing choosing the coating offering the best tribological properties and lifetime.
|
Page generated in 0.0395 seconds