• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 84
  • 18
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 238
  • 93
  • 66
  • 65
  • 63
  • 54
  • 30
  • 28
  • 23
  • 23
  • 23
  • 23
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Distribution of Nitric Oxide Synthase Isoforms in Neurons and Glial Cells Under Physiological or Pathological Conditions in the Rostral Ventrolateral Medulla of the Rat

Tsai, Po-chuan 15 August 2005 (has links)
The rostral ventrolateral medulla (RVLM) regulates vasomotor activity via sympathoexcitation and sympathoinhibition to maintain blood pressure. Nitric oxide synthesized by nitric oxide synthase (NOS) I and NOS II within RVLM is responsible for sympathoexcitation and sympathoinhibition respectively. In our previously study, under physiological condition RVLM neurons contain both NOS I and NOS II protein, and NOS III protein is expressed mainly on blood vessels. Under Mevinphos (Mev) intoxication, our previously study demonstrates that the expression of RVLM NOS I and II mRNA or protein are both increased under Mev intoxication phase I, and NOSII mRNA or protein are further increased under Mev intoxication phase II. On the other hand, in rat central nervous system, about 65% of total cells are glial cells, including astrocytes, microglia and oligodendrocytes. However, the expressions of NOS isoforms in RVLM glial cells still need to be determined. We used double immunofluorescence staining and confocal microscopy to investigate the distributions of NOS isoforms protein in RVLM neurons and glial cells under physiological condition and under pathological condition using Mev intoxication as our model. We further compared the distributions of NOS isoforms in RVLM neurons and glial cells under physiological or pathological conditions. The confocal images indicate that NOS I protein reactivity co-localized with neurons and microglia in the RVLM. NOS II protein reactivity co-localized with neurons, astrocytes and microglia. NOS III protein reactivity co-localized with blood vessels and microglia. The distributions of NOS isoforms protein reactivity in RVLM neurons and glial cells under Mev intoxication are the same as under physiological condition. Furthermore, the expressions of NOS I protein within neurons or microglia and NOS II in neurons, astrocytes or microglia are progressively increased under Mev intoxication. On the other hand, the expression of NOS III within microglia under Mev intoxication was similar to physiological condition. The population of NOS I-positive neurons or microglia, and NOS II-positive neurons, astrocytes or microglia increased under Mev intoxication. However the population of NOS III-positive microglia decreased under Mev intoxication. These results indicate that within RVLM, the distributions of NOS I are in neurons and microglia; NOS II are in neurons, astrocytes and microglia; NOS III are in blood vessels and microglia. We suggest that under Mev intoxication, the source of up-regulated NOS I protein includes neurons and microglia; and the up-regulated NOS II protein comes from neurons, astrocytes and microglia.
72

Serumalbumin bewirkt eine osmotische Schwellung der Müllerschen Gliazellen in der Netzhaut der Ratte

Löffler, Silvana 25 August 2015 (has links) (PDF)
Für die visuelle Wahrnehmung im Gehirn spielt die ungestörte Funktion von Neuronen und Gliazellen in der Netzhaut eine entscheidende Rolle. Viele schädigende Prozesse wie Entzündungen, Ischämien oder Traumata können zur Ödementstehung in der Netzhaut führen. Da die Netzhaut entwicklungsgeschichtlich einen vorverlagerten Teil des Zwischenhirns darstellt, lassen sich die pathophysiologischen Zusammenhänge, die zur Entstehung eines Netzhautödems führen, auch auf die Ödementstehung im Gehirn übertragen. Diese Arbeit beschäftigt sich mit dem Phänomen der Zellvolumenregulation von Müllerzellen – den hauptsächlich in der Netzhaut anzutreffenden Gliazellen – und leistet damit einen Beitrag zur Grundlagenerforschung der Ödementstehung in neuronalen Geweben. Die im Rahmen von Ödementstehungen regelmäßig zu beobachtenden Gefäßpermeabilitätserhöhungen führen in neuronalen Geweben auch zur Extravasation von Albumin. Unter diesem Gesichtspunkt untersucht die vorliegende Arbeit den Einfluss von bovinem Serumalbumin auf die Müllerzellen und die damit verbundenen Mechanismen am Modell der Netzhaut von Ratten.
73

Effects of glial cell line-derived neurotrophic factor (GDNF) on mouse fetal ventral mesencephalic tissue

Nevalainen, Nina January 2008 (has links)
The symptoms of Parkinson's disease occur due to degeneration of dopamine neurons in substantia nigra. It has been demonstrated that glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor when it comes to protect and enhance survival of dopamine neurons in animal models of Parkinson's disease. The aim of this study was to evaluate short- and long-term effects of GDNF on survival and nerve fiber outgrowth of dopamine cells and astrocytic migration in mouse fetal ventral mesencephalic (VM) tissue. Primary tissue cultures were made of mouse fetal VM tissue and evaluated at 7 and 21 days in vitro (DIV) in terms of dopaminergic nerve fiber outgrowth and astrocytic migration when developed with GDNF present, partially, or completely absent. The results revealed that VM tissue cultured in the absence of GDNF did not exhibit any significant differences in migration of astrocytes or dopaminergic nerve fiber outgrowth neither after 7 DIV nor after 21 DIV, when compared with tissue cultured with GDNF present. Migration of astrocytes and dopaminergic nerve fiber outgrowth reached longer distances when tissue was left to develop for 21 DIV in comparison with 7 DIV. In order to study the long-term effects of GDNF, mouse fetal dopaminergic tissue was transplanted into the ventricles of adult mice and evaluated after 6 months. No surviving dopamine neurons were present in the absence of GDNF. In contrast dopamine neurons developed with GDNF did survive, indicating that GDNF is an essential neurotrophic factor when it comes to long-term dopamine cell survival. More cases have to be assessed in the future in order to strengthen the findings. Thus, transplanted dopamine neurons will be assessed after 3 and 12 months in order to map out when dopamine neurons deprived of GDNF undergo degeneration.
74

The Molecular and Behavioural Effects of Glial Modulators Propentofylline and PJ34 in a Rodent Model of Neuropathic Pain

GRENIER, PATRICK, 31 August 2010 (has links)
Neuronal-glial interactions play an important role in the development of neuropathic (NP) pain states. Earlier studies in our laboratory suggest a role for activated glia in morphine-induced delta opioid receptor (DOR) trafficking by altering DOR functional competence. Thus, chronic treatment with the glial inhibitor, propentofylline (PF) blocks the anti-allodynic and anti-hyperalgesic effects of the DOR agonist deltorphin II. The present study aimed to determine whether NP pain-induced changes in DOR function and trafficking are dependent on glial activation. The first global aim of this study was to determine the molecular and behavioural effects of glial activation by two glial inhibitors, PF and PJ34 in a model of neuropathic pain. Glial activation was assessed via changes in specific proteins using fluorescent immunohistochemistry (IHC). Neuropathy-induced c-Fos activation was assessed by IHC and pain hypersensitivity was assessed, including mechanical allodynia and spontaneous pain. The second global aim determined the role of activated glia in changes in neuropathy-induced increases in DOR function and DOR subcellular localization using immunogold IHC and transmission electron microscopy (EM). Chronic PJ34 attenuated chronic constriction injury (CCI)-induced mircoglial, but not astrocyte activation. Chronic administration of either PF or PJ34 attenuated the CCI-induced increase in c-Fos immunoreactive expression. However, neither drug attenuated CCI-induced mechanical allodynia or spontaneous pain. Both chronic PF and PJ34 administration in NP animals attenuated the anti-allodynic effects of the DOR-selective agonist deltorphin II, suggesting glial inhibition blocks DOR function. However, chronic PF, but not PJ34, blocked the anti-allodynic effects of another DOR agonist, SNC80. These data suggest that SNC80 might be targeting a different DOR molecular species that is not affected by factors released from microglia. Finally, EM experiments revealed that chronic PF treatment prevented the CCI-induced increase in DOR trafficking providing a positive correlation between behaviour and receptor localization. This study suggests that activated glia contribute to changes in DOR function and trafficking in NP pain states. It also suggests that there is a dissociation between glial inhibition and pain hypersensitivity. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2010-08-31 14:45:47.888
75

Biomarkers of Optic Nerve Head Glial Cell Activation Following Biomechanical Insult

Rogers, Ronan 31 August 2012 (has links)
Glaucoma is a leading cause of irreversible blindness worldwide. Primary Open Angle Glaucoma is the most common form of the disease and can be characterized by the slow and irreversible apoptotic death of retinal ganglion cells, a unique optic nerve neuropathy resulting in loss of vision. Increased intra-ocular pressure is known to be a leading risk-factor for glaucoma, and lowering IOP is currently the only evidence based method for the clinical management of the disease. However the exact mechanism by which an elevated IOP leads to the death of the retinal ganglion cells is still poorly understood. By using previous finite element models of glaucoma to quantify the biomechanical environment within the optic nerve head we have built human primary cell culture models in an attempt to replicate aspects of early glaucomatous optic neuropathy. In these models we mimic the in vivo biomechanical environment in the lamina cribrosa by growing human optic nerve head astrocytes and lamina cribrosa cells on compliant substrates and subjecting the cells to deformation. Specifically, a global protein scan using isobaric tags for relative and absolute quantitation (iTRAQ) was performed on all the experiments to identify potential biomarkers for glaucoma. A secondary analysis using enzyme-linked immunosorbent assay (ELISA) identified extracellular proteins of interest. Over 520 proteins were identified in response to biomechnical strain from both cell types. Many of these proteins centred on TGF-, p53 and TNF, which have previously been shown to play a role in the pathogenesis of glaucoma. Proteins found in astrocytes were astrocytic phosphoprotein (PEA15), UDP-glucose dehydrogenase (UGDH), and annexin A4 (ANXA4). LC proteins were bcl-2-associated athanogene 5 (BAG5), nucleolar protein 66 (NO66) and Eukaryotic translation initiation factor 5A (eIF-5A). These proteomic results will enable a series of functional studies looking into the role select markers play in ONH glial cell activation, a process still not well understood. Candidates for this work will be prioritized based on novelty and relevance to mechanisms of cellular stress and death. We hypothesize that study of these molecular pathways will provide insight into this process, as well as improve our understanding of how glial activation contributes to the development of glaucomatous optic neuropathy.
76

Biomarkers of Optic Nerve Head Glial Cell Activation Following Biomechanical Insult

Rogers, Ronan 31 August 2012 (has links)
Glaucoma is a leading cause of irreversible blindness worldwide. Primary Open Angle Glaucoma is the most common form of the disease and can be characterized by the slow and irreversible apoptotic death of retinal ganglion cells, a unique optic nerve neuropathy resulting in loss of vision. Increased intra-ocular pressure is known to be a leading risk-factor for glaucoma, and lowering IOP is currently the only evidence based method for the clinical management of the disease. However the exact mechanism by which an elevated IOP leads to the death of the retinal ganglion cells is still poorly understood. By using previous finite element models of glaucoma to quantify the biomechanical environment within the optic nerve head we have built human primary cell culture models in an attempt to replicate aspects of early glaucomatous optic neuropathy. In these models we mimic the in vivo biomechanical environment in the lamina cribrosa by growing human optic nerve head astrocytes and lamina cribrosa cells on compliant substrates and subjecting the cells to deformation. Specifically, a global protein scan using isobaric tags for relative and absolute quantitation (iTRAQ) was performed on all the experiments to identify potential biomarkers for glaucoma. A secondary analysis using enzyme-linked immunosorbent assay (ELISA) identified extracellular proteins of interest. Over 520 proteins were identified in response to biomechnical strain from both cell types. Many of these proteins centred on TGF-, p53 and TNF, which have previously been shown to play a role in the pathogenesis of glaucoma. Proteins found in astrocytes were astrocytic phosphoprotein (PEA15), UDP-glucose dehydrogenase (UGDH), and annexin A4 (ANXA4). LC proteins were bcl-2-associated athanogene 5 (BAG5), nucleolar protein 66 (NO66) and Eukaryotic translation initiation factor 5A (eIF-5A). These proteomic results will enable a series of functional studies looking into the role select markers play in ONH glial cell activation, a process still not well understood. Candidates for this work will be prioritized based on novelty and relevance to mechanisms of cellular stress and death. We hypothesize that study of these molecular pathways will provide insight into this process, as well as improve our understanding of how glial activation contributes to the development of glaucomatous optic neuropathy.
77

Modulation of CSPG sulfation patterns through siRNA silencing of sulfotransferase expression to promote CNS regeneration

Millner, Mary Angela 10 July 2008 (has links)
Injury to the central nervous system (CNS) results in the formation of a highly inhibitory glial scar consisting mainly of chondroitin sulfate proteoglycans (CSPGs). CSPGs are comprised of a protein core with covalently attached chondroitin sulfate glycosaminoglycan (CS-GAG) side chains. CSPGs and CS-GAGs have been implicated in the regenerative failure of the CNS, though the mechanism underlying inhibition is unclear. Sulfation affects both the physical and chemical characteristics of CS-GAGs and, therefore, it has been hypothesized that certain sulfation patterns are more inhibitory than others. To investigate this hypothesis, specific chondroitin sulfate sulfotransferases (CSSTs), the enzymes responsible for CS-GAG sulfation, were knocked down in vitro using siRNA. C4ST-1, C4ST-2, and C46ST were chosen as targets for gene knockdown in this study based on their expression in neural tissue and the extent of inhibition caused by their respective CS-GAG. It was hypothesized that transfection of primary rat astrocytes with siRNAs designed to prevent the expression of C4ST-1, C4ST-2, and C46ST would decrease specific sulfation patterns of CSPGs, resulting in improved neurite extension in a neurite guidance assay. Through optimization of siRNA dose, astrocyte viability was maintained while successfully knocking down mRNA levels of C4ST-1, C4ST-2, and C46ST and significantly reducing total levels of secreted CS-GAGs. However, no increase in the incidence of neurite extension was observed using conditioned media collected from siRNA transfected astrocytes compared to non-transfected controls. These data suggest that sulfation does not contribute to CSPG-mediated neurite inhibition, though further investigation is necessary to confirm these findings. Significantly, this work has established a paradigm for investigating the role of CSPG sulfation patterns in CNS regeneration.
78

On dopamine neurons : nerve fiber outgrowth and L-DOPA effects /

af Bjerkén, Sara, January 2008 (has links)
Diss. (sammanfattning) Umeå : Univ., 2008. / Härtill 5 uppsatser.
79

Studies of biochemical brain damage markers in patients at a neurointensive care unit /

Nylén, Karin, January 2007 (has links)
Diss. (sammanfattning) Göteborg : Göteborgs universitet, 2007. / Härtill 4 uppsatser.
80

Spermatogonial stem cells show an age-dependent and age-independent difference in commitment to self-renewal and differentiation

Ebata, Kevin. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Experimental Medicine. Title from title page of PDF (viewed 2008/01/12). Includes bibliographical references.

Page generated in 0.035 seconds