• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of PKCε in pancreatic β-Cell secretory function and its contribution to the development of lipid induced secretory defects

Burchfield, James, Clinical School - St Vincent's Hospital, Faculty of Medicine, UNSW January 2008 (has links)
Type 2 diabetes accounts for 85-90% of all people with diabetes and is currently estimated to affect more than 180 million people worldwide, a figure estimated to double by the year 2030. Thus understanding the basic biology of glucose homeostasis and how it is altered during disease progression is crucial to the development of safe and effective treatment regimes. The link between high dietary fat and the development of type Il diabetes is well established. Chronic treatment of pancreatic islets with the lipid palmitate induces defects in glucose stimulated insulin secretion (GSIS) akin to those seen in the development of type Il diabetes. Previous studies from our group have identified the lipid-activated kinase protein kinase C epsilon (PKCε) as a potential mediator of some of these effects. Deletion of PKCε in mice results in complete protection from high-fat diet induced glucose intolerance. This protection is associated with enhanced circulating insulin suggesting that PKCε may be involved in the regulation of insulin release from the pancreatic β-Cell. The data presented here suggests that PKCs plays an important role in the regulation of insulin secretion under both physiological and pathophysiological conditions. We demonstrate that PKCε can be activated by chronic lipid treatment and acute cholinergic stimulation. Under these conditions insulin secretion is enhanced by PKCε deletion or inhibition suggesting that PKCε is a negative regulator of insulin secretion. Mechanistically the PKCs mediated inhibition of insulin release by acute or chronic PKCε activation appears to be distinct. The effect of PKCε induced by palmitate pre-treatment appears to be distal to calcium influx. The pool of pre-docked vesicles is enhanced in palmitate pre-treated β-cells lacking PKCε suggesting that PKCε may be involved in the regulation of vesicle dynamics. In contrast, calcium dynamics induced by cholinergic stimulation are altered by PKCε deletion, suggesting an effect on either the calcium channels themselves or on the upstream signalling. Given the ability of PKCε to inhibit insulin secretion, inhibition of PKCε in the β-cells of people suffering from insulin resistance and (or) type II diabetes represents a novel target for the treatment of type II diabetes.
2

Glucose-induced oscillations in protein phosphorylation in clonal pancreatic beta-cells (INS-1): implications for metabolic function

Narmuratova, Gulzhan 10 March 2022 (has links)
OBJECTIVE: Type 2 diabetes (T2D), the most common type of diabetes characterized by high blood glucose and insulin resistance, results from both genetic and environmental factors. Our lab has proposed that chronic excess nutrients induce insulin hypersecretion from the pancreatic ß-cell, contributing to hyperinsulinemia, a prequel to T2D. Normal glucose-stimulated insulin secretion (GSIS) is oscillatory, a feature that is lost in patients with T2D. In this thesis we examine the oscillatory secretion profiles of clonal pancreatic ß-cells cultured in normal and excess nutrients that mimic conditions of T2D. We also begin to examine oscillations in protein phosphorylation that may contribute to normal ß-cell metabolism and GSIS, but if altered might potentially lead to impaired insulin secretion. METHODS: Nutrient regulation of oscillatory insulin release was studied in clonal pancreatic β-cells (INS-1) cultured in multiwell plates in both low (4 mM) and high (11 mM) glucose. Insulin secretion was stimulated in cells from multiwell plates one well at a time at 30 sec intervals and sampled simultaneously at the end of the timecourse. Insulin secretion and insulin content were measured using a homogenous time-resolved fluorescence (HTRF) insulin kit (Cisbio). Protein was extracted from these same cells for analysis of time-dependent phosphorylation by western blot using specific antibodies. Protein phosphorylation was detected using SuperSignal West Femto chemiluminescence reagent (ThermoFisher) and imaged on an iBright Imaging System (Invitrogen). RESULTS: Insulin secretion from INS-1 cells grown in separate plates and in 4 mM glucose oscillated with a period of 8.2  0.5 min compared to 5.0  0.5 min in cells cultured at 11 mM glucose. The amplitude of oscillations was 40.4  11.5 and 14.6  1.5 for cells cultured in 4 and 11 mM glucose respectively. Oscillations in secretion from cells cultured in 4 and 11 mM glucose in the same plate were not different in period but different in amplitude due in part to reduced insulin content. Oscillation in the phosphorylation patterns of acetyl-CoA carboxylase (ACC) and myristoylated alanine rich C kinase substrate (MARCKS) were measured in cells cultured in 4 mM glucose and both exhibited a peak in phosphorylation that occurred at the nadir of the insulin oscillation between peaks of insulin release. CONCLUSION: Insulin secretion from pancreatic ß-cells is affected by nutrient status as excess nutrients decrease the amplitude of oscillations in insulin release. The period of oscillations can also be affected. Oscillations in protein phosphorylation are consistent with both ACC and MARCKS contributing to normal GSIS. These initial studies provide evidence of the suitability of this model system to correlate oscillations in protein activity to exocytosis. Future studies focused on the effects of low and high glucose will potentially reveal new important therapeutic targets that may help prevent/reverse/ameliorate insulin hypersecretion leading to insulin resistance and T2D.
3

Sphingosine kinase 1-interacting protein is a novel regulator of glucose-stimulated insulin secretion. / Sphingosine kinase 1-interacting protein はグルコース応答性インスリン分泌の新たな調節分子である。

Wang, Yu 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20616号 / 医博第4265号 / 新制||医||1023(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 渡邊 直樹, 教授 岩田 想 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
4

Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion

Zhao, Shangang 12 1900 (has links)
Les cellules beta pancréatiques sécrètent l’insuline lors d’une augmentation post-prandiale du glucose dans le sang. Ce processus essentiel est contrôlé par des facteurs physiologiques, nutritionnels et pathologiques. D’autres sources d’énergie, comme les acides aminés (leucine et glutamine) ou les acides gras potentialisent la sécrétion d’insuline. Une sécrétion d’insuline insuffisante au besoin du corps déclanche le diabète. Le rôle que joue l’augmentation du calcium intracellulaire et les canaux K+/ATP dans la sécrétion d’insuline est bien connu. Bien que le mécanisme exact de la potentialisation de la sécrétion d’insuline par les lipides est inconnu, le cycle Glycérolipides/Acides gras (GL/FFA) et son segment lipolytique ont été reconnu comme un composant essentiel de la potentialisation lipidique de la sécrétion d’insuline. Le diacylglycérol, provenant de la lipolyse, a été proposé comme un signal lipidique important d’amplification. Cependant, l’hydrolyse des triglycérides et des diacylglycérides a été démontrée essentielle pour la sécrétion d’insuline stimulée par le glucose, en suggérant un rôle du monoacylglycérol (MAG) dans ce processus. Dans cette étude, on démontre que la réduction de la sécrétion d’insuline stimulée par le glucose, lors d’une inhibition de la lipolyse, est restaurée par l’addition de MAG. Dans les cellules beta pancréatiques, le niveau de MAG augmente en présence des concentrations élevées du glucose, et également lorsqu’on inhibe l’enzyme MAG hydrolase abhydrolase-6 (ABHD6) avec l’inhibiteur spécifique WWL70. L’analyse lipidomique a démontré qu’après la stimulation des cellules beta pancréatiques avec le glucose et aussi avec le WWL70, l’espèce la plus accumulée de MAG était le 1-stearoylglycérol (1-SG). L’addition de 1-SG, de 1-palmitoylglycérol (1-PG) ou de WWL70 augmente la sécrétion d’insuline stimulée par le glucose, et cette augmentation est indépendante de la génération de acides gras à partir de MAG. Cela suggère que le MAG est un signal lipidique pour la potentialisation de la sécrétion d’insuline stimulée par le glucose. De plus, la surexpression du gène d’ABHD6 dans les cellules INS832/13 cause une réduction de la sécrétion d’insuline, due probablement à la diminution des niveaux intracellulaire de MAG. Avec le but de comprendre le mécanisme moléculaire impliqué dans la potentialisation de la sécrétion d’insuline par le MAG, on a bloqué l’action du récepteur vanilloid-1 (TRPV1) liant le MAG par l’agent pharmacologiste, AMG9810. Le traitement des cellules beta pancréatique par AMG9810 entraîne une diminution de la potentialisation de la sécrétion de l’insuline induite par le MAG. Il est a noter que le MAG pourrait activer TRPV1 par une liaison physique dans la membrane cellulaire interne; ce qui entraînerai l’entrée du calcium dans la cellule, et ensuite la stimulation de l’exocytose des granules à insuline. En soutien de cette hypothèse, on a trouvé une diminution du calcium intracellulaire lorsqu’on traite au AMG9810 des cellules beta pancréatique de rat (provenant des îlots dispersés) stimulées au glucose et au WWL70. L’ensemble des résultats suggère que le MAG est un médiateur de la potentialisation lipidique de la sécrétion d’insuline stimulée par le glucose. Vu que l’inhibition pharmacologique d’ABHD6 augmente la sécrétion d’insuline, on pourra conclure que cette enzyme représente une cible thérapeutique potentielle dans le développement des médicaments anti-diabétiques, visant une augmentation de la sécrétion d’insuline. / Insulin secretion by the pancreatic b-cell in response to post-prandial increase in blood glucose levels is an essential physiological process that is governed by cellular, nutritional and pathological factors. Other fuels including amino acids like leucine and glutamine and also fatty acids contribute to further augment insulin secretion. Failure to secrete adequate amount of insulin according to the changing demands of the body by b-cell is a key determinant of diabetes. The role played by the elevated Ca2+ influx and K+-ATP channels in insulin secretion is well known. Even though the precise mechanism of the lipid amplification of insulin secretion and the involved molecular signals are not clear, Glycerolipid/Free fatty acid (GL/FFA) cycle and its lipolytic segment have been recognized as essential components in the lipid amplification pathway of insulin secretion. Diacylglycerol produced by lipolysis was proposed as an important lipid amplification signal. However, hydrolysis of triglycerides and also of diacylglycerols is shown to be essential for glucose stimulated insulin secretion (GSIS), indicating a possible role for monoacylglycerol (MAG) in this process. In the present study we demonstrate that the obliterated GSIS due to lipolysis inhibition in b-cells can be restored by providing exogenous MAG. In the b-cells MAG levels increase significantly in the presence of high glucose concentration and specific inhibition of the major MAG hydrolase, abhydrolase-6 (ABHD6), in b-cells and islets with WWL70 leads to accumulation of MAG with concomitant increase in insulin secretion. Lipidomics analysis indicated that the major MAG species that is elevated by high glucose as well as WWL70 addition is 1-stearoylglycerol (1-SG). Exogenously added 1-SG and also 1-palmitoylglycerol (1-PG) strongly enhanced GSIS and this augmentation is not dependent on the generation of FFA by these MAGs. This indicates that MAG is a potential candidate for being the lipid signal for GSIS amplification. Further evidence for this was provided by the observation that overexpression of the MAG hydrolase ABHD6 in INS832/13 cells, resulted in decreased insulin secretion, probably owing to the lowered MAG level inside the b-cells. Pharmacological studies using AMG9810, a specific antagonist of transient receptor potential vanilloid-1 (TRPV1) receptor that binds MAG, revealed that a blockade of TRPV1 strongly attenuated the MAG-augmented insulin secretion. Since MAG is a potential activator of TRPV1, it is likely that MAG binds on the inner surface of the cell membrane to TRPV1, which in turn triggers rapid influx of Ca2+ thereby promoting insulin granule exocytosis. Thus, AMG9810 was found to lower Ca2+ influx into dispersed rat islet cells that was induced by high glucose and also WWL70. These results collectively suggest that MAG is the potential mediator of the lipid amplification of glucose-stimulated insulin secretion. Our results also indicate that pharmacological intervening at the ABHD6 hydrolysis step enhances insulin secretion; this enzyme protein can be a promising thrapeutic target for the development of anti-diabetic drugs that promote insulin secretion.
5

Distribuce mitochondriálních odpřahujících proteinů ve vybraných tkáních myši a potkana / Distribution of mitochondrial uncoupling proteins in selected tissues from mice and rat

Alán, Lukáš January 2010 (has links)
Mitochondrial uncoupling proteins (UCPs) belong to the superfamily of mitochondrial anion-carriers. The longest known is UCP1, predominantly expressed in brown adipose tissue, where it takes part in nonshivering thermogenesis. In the late 1990s were discovered other sequence homologs of UCP1 with tissue specific distribution. The Function of these "new" uncoupling proteins is still uncertain. It is assumed that each of the isoforms has a specific function depending on the type of tissue. This thesis showed differences in tissue transcription pattern between rat and mice using RT-PCR absolute quantification. Significant differences in pattern were found in lungs, brain and muscle. In each case UCP expression was higher in mice tissues. Mice lungs express mainly UCP2. The difference in mice brain is caused by ucp4 and ucp5 genes transcription and finally in muscle is highest content of UCP3 mRNA. We investigated whether any of ucp transcript can complement ucp2 transcripton in spleen or lungs of ucp2 -/- mice. We did not find any difference which can explain, that in isolated lung mitochondria of fasted ucp2-/- mice were uncoupled in state 4. In the last project, we found relationship between ucp2 transcription in insulinoma INS-1E cells and oxygen levels of the cultivation atmosphere.
6

Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion

Zhao, Shangang 12 1900 (has links)
Les cellules beta pancréatiques sécrètent l’insuline lors d’une augmentation post-prandiale du glucose dans le sang. Ce processus essentiel est contrôlé par des facteurs physiologiques, nutritionnels et pathologiques. D’autres sources d’énergie, comme les acides aminés (leucine et glutamine) ou les acides gras potentialisent la sécrétion d’insuline. Une sécrétion d’insuline insuffisante au besoin du corps déclanche le diabète. Le rôle que joue l’augmentation du calcium intracellulaire et les canaux K+/ATP dans la sécrétion d’insuline est bien connu. Bien que le mécanisme exact de la potentialisation de la sécrétion d’insuline par les lipides est inconnu, le cycle Glycérolipides/Acides gras (GL/FFA) et son segment lipolytique ont été reconnu comme un composant essentiel de la potentialisation lipidique de la sécrétion d’insuline. Le diacylglycérol, provenant de la lipolyse, a été proposé comme un signal lipidique important d’amplification. Cependant, l’hydrolyse des triglycérides et des diacylglycérides a été démontrée essentielle pour la sécrétion d’insuline stimulée par le glucose, en suggérant un rôle du monoacylglycérol (MAG) dans ce processus. Dans cette étude, on démontre que la réduction de la sécrétion d’insuline stimulée par le glucose, lors d’une inhibition de la lipolyse, est restaurée par l’addition de MAG. Dans les cellules beta pancréatiques, le niveau de MAG augmente en présence des concentrations élevées du glucose, et également lorsqu’on inhibe l’enzyme MAG hydrolase abhydrolase-6 (ABHD6) avec l’inhibiteur spécifique WWL70. L’analyse lipidomique a démontré qu’après la stimulation des cellules beta pancréatiques avec le glucose et aussi avec le WWL70, l’espèce la plus accumulée de MAG était le 1-stearoylglycérol (1-SG). L’addition de 1-SG, de 1-palmitoylglycérol (1-PG) ou de WWL70 augmente la sécrétion d’insuline stimulée par le glucose, et cette augmentation est indépendante de la génération de acides gras à partir de MAG. Cela suggère que le MAG est un signal lipidique pour la potentialisation de la sécrétion d’insuline stimulée par le glucose. De plus, la surexpression du gène d’ABHD6 dans les cellules INS832/13 cause une réduction de la sécrétion d’insuline, due probablement à la diminution des niveaux intracellulaire de MAG. Avec le but de comprendre le mécanisme moléculaire impliqué dans la potentialisation de la sécrétion d’insuline par le MAG, on a bloqué l’action du récepteur vanilloid-1 (TRPV1) liant le MAG par l’agent pharmacologiste, AMG9810. Le traitement des cellules beta pancréatique par AMG9810 entraîne une diminution de la potentialisation de la sécrétion de l’insuline induite par le MAG. Il est a noter que le MAG pourrait activer TRPV1 par une liaison physique dans la membrane cellulaire interne; ce qui entraînerai l’entrée du calcium dans la cellule, et ensuite la stimulation de l’exocytose des granules à insuline. En soutien de cette hypothèse, on a trouvé une diminution du calcium intracellulaire lorsqu’on traite au AMG9810 des cellules beta pancréatique de rat (provenant des îlots dispersés) stimulées au glucose et au WWL70. L’ensemble des résultats suggère que le MAG est un médiateur de la potentialisation lipidique de la sécrétion d’insuline stimulée par le glucose. Vu que l’inhibition pharmacologique d’ABHD6 augmente la sécrétion d’insuline, on pourra conclure que cette enzyme représente une cible thérapeutique potentielle dans le développement des médicaments anti-diabétiques, visant une augmentation de la sécrétion d’insuline. / Insulin secretion by the pancreatic b-cell in response to post-prandial increase in blood glucose levels is an essential physiological process that is governed by cellular, nutritional and pathological factors. Other fuels including amino acids like leucine and glutamine and also fatty acids contribute to further augment insulin secretion. Failure to secrete adequate amount of insulin according to the changing demands of the body by b-cell is a key determinant of diabetes. The role played by the elevated Ca2+ influx and K+-ATP channels in insulin secretion is well known. Even though the precise mechanism of the lipid amplification of insulin secretion and the involved molecular signals are not clear, Glycerolipid/Free fatty acid (GL/FFA) cycle and its lipolytic segment have been recognized as essential components in the lipid amplification pathway of insulin secretion. Diacylglycerol produced by lipolysis was proposed as an important lipid amplification signal. However, hydrolysis of triglycerides and also of diacylglycerols is shown to be essential for glucose stimulated insulin secretion (GSIS), indicating a possible role for monoacylglycerol (MAG) in this process. In the present study we demonstrate that the obliterated GSIS due to lipolysis inhibition in b-cells can be restored by providing exogenous MAG. In the b-cells MAG levels increase significantly in the presence of high glucose concentration and specific inhibition of the major MAG hydrolase, abhydrolase-6 (ABHD6), in b-cells and islets with WWL70 leads to accumulation of MAG with concomitant increase in insulin secretion. Lipidomics analysis indicated that the major MAG species that is elevated by high glucose as well as WWL70 addition is 1-stearoylglycerol (1-SG). Exogenously added 1-SG and also 1-palmitoylglycerol (1-PG) strongly enhanced GSIS and this augmentation is not dependent on the generation of FFA by these MAGs. This indicates that MAG is a potential candidate for being the lipid signal for GSIS amplification. Further evidence for this was provided by the observation that overexpression of the MAG hydrolase ABHD6 in INS832/13 cells, resulted in decreased insulin secretion, probably owing to the lowered MAG level inside the b-cells. Pharmacological studies using AMG9810, a specific antagonist of transient receptor potential vanilloid-1 (TRPV1) receptor that binds MAG, revealed that a blockade of TRPV1 strongly attenuated the MAG-augmented insulin secretion. Since MAG is a potential activator of TRPV1, it is likely that MAG binds on the inner surface of the cell membrane to TRPV1, which in turn triggers rapid influx of Ca2+ thereby promoting insulin granule exocytosis. Thus, AMG9810 was found to lower Ca2+ influx into dispersed rat islet cells that was induced by high glucose and also WWL70. These results collectively suggest that MAG is the potential mediator of the lipid amplification of glucose-stimulated insulin secretion. Our results also indicate that pharmacological intervening at the ABHD6 hydrolysis step enhances insulin secretion; this enzyme protein can be a promising thrapeutic target for the development of anti-diabetic drugs that promote insulin secretion.
7

Childhood Obesity and Islet Function

Staaf, Johan January 2017 (has links)
The prevalence of childhood obesity and Type 2 Diabetes Mellitus (T2DM) has increased during recent decades. T2DM is accompanied with functional changes in the islets of Langerhans, which can be identified early in the pathogenesis. The aim of this thesis was to explore how metabolic changes caused by obesity early in life relate to islet function prior to overt T2DM. To address this, Uppsala Longitudinal Study of Childhood Obesity (ULSCO) was established (paper I). Initially, the association between palmitate and insulin secretion was investigated using a translational approach with obese and lean normoglycemic juveniles and isolated human islets (paper II). Secondly, dynamics of islet-hormones insulin and glucagon, and gut-hormones glucagon like-peptide 1 (GLP-1) and glicentin (paper III) and magnetic resonance imaging of pancreatic fat fraction (PFF) (paper IV) were studied in association to glucose tolerance and beta-cell function. Finally, a novel method of analysing shape features of oral glucose tolerance test (OGTT) curves was introduced and evaluated (paper V). Obese subjects had high prevalence of prediabetes and metabolic syndrome (MetS) (paper I). In obese pre-pubertal children with elevated palmitate levels, hyperinsulinemia was observed (paper II). In contrast, obese pubertal adolescents with similar palmitate levels showed moderate insulin levels during OGTT with delayed first phase insulin response. To explore mechanisms for these variations, isolated human islets were exposed to palmitate for different time periods in vitro. After 2 days accentuated insulin response was observed. Impaired beta-cell function and apoptosis were evident after 7 days, however. Hyperglucagonemia and disturbed GLP-1 and glicentin levels were associated with obesity and glycaemic status, with fasting glicentin being predictive of prediabetes (paper III). Furthermore, PFF was increased in obese subjects and associated to MetS and visceral adipose tissue, but not to beta-cell function (paper IV). OGTT curves were converted into geometric centres, centroids, which correlated with differences in glucose tolerance (paper V). In conclusion, the islet function in obese children was associated with elevated levels of palmitate, but not pancreatic fat. Fasting palmitate and glicentin levels, as well as centroid analyses of OGTT curves, could potentially identify obese children at risk of prediabetes and subsequent T2DM.
8

ENGINEERING DESIGN OF NOVEL 3D MICROPHYSIOLOGICAL SYSTEM AND SENSOR FOR FUNCTIONAL ASSESSMENT OF PANCREATIC BETA-CELLS

Emma Vanderlaan (15348208) 25 April 2023 (has links)
<p>  </p> <p>Diabetes, a chronic condition characterized by elevated blood glucose levels, arises when pancreatic β-cells lose capacity to produce a robust, dynamic glucose-stimulated insulin secretion (GSIS) response. Accurate measurement of β-cell health and function <em>ex vivo</em> is thus fundamental to diabetes research, including studies evaluating disease mechanisms, novel drug candidates, and replacement β-cell populations. However, present-day dynamic GSIS assays typically represent end-point measurements, involve expensive commercial perifusion machines, and require time-consuming enzyme-linked immunosorbent assays (ELISA) for insulin detection. Microfluidic devices developed as accessible, low-cost alternatives still rely on secondary ELISAs and suspend islets in liquid medium, limiting their survival <em>in vitro</em>. Here, we present a novel, 3D-printed microphysiological system (MPS) designed to recreate components of <em>in-vivo</em> microenvironments through encapsulation in fibrillar type I collagen and restoration of favorable molecular transport conditions. Following computational-informed design and rapid prototyping, the MPS platform sustained collagen-encapsulated mouse islet viability and cytoarchitecture for 5 days and supported <em>in-situ</em> measurements of dynamic β-cell function. To rapidly detect insulin secretion from β-cells in the MPS, we then developed a highly sensitive electrochemical sensor for zinc (Zn2+), co-released with insulin, based on glassy carbon electrodes modified with bismuth and indium and coated with Nafion. Finally, we validated sensor detection of Zn2+ released from glucose-stimulated INS-1 β-cells and primary mouse islets, finding high correlation with insulin as measured by standard ELISA. Together, the 3D MPS and Zn2+ sensor developed in this dissertation represent novel platforms for evaluating β-cell health and function in a low-cost, user-friendly, and physiologically-relevant manner. </p>
9

The Beneficial Effects of The Gut-Derived Metabolite Trimethylamine N-oxide on Functional β-Cell Mass

Krueger, Emily Suzanne 06 August 2021 (has links)
Elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD) 10 years ago. Research has since defined that serum TMAO accumulation is controlled by the diet-microbiome-liver-kidney axis. Choline related nutrients are consumed in excess during over-nutrition from a Western diet. The resultant elevated serum TMAO is investigated across various chronic metabolic diseases and many tissue types. While TMAO is most clearly linked to CVD mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease context across relevant metabolic tissues including liver, kidney, brain, adipose, and muscle tissues. This review explores the variable TMAO effects in healthy and diseased conditions. Since impaired pancreatic β-cell function is a hallmark of metabolic disease pathogenesis which are largely unexplored in TMAO research, the following primary research results investigate TMAO effects on in vitro functional β-cell mass in relation to healthy and type 2 diabetes (T2D) conditions. Although we hypothesized that TMAO would aggravate functional β-cell mass, the data demonstrate that TMAO improves the T2D phenotype by increasing insulin secretion and production and reducing oxidative stress. Therefore, this work provides crucial support for the emerging context dependent molecular effects of TMAO during metabolic disease progression.

Page generated in 0.133 seconds