Spelling suggestions: "subject:"glycolipids analogues""
1 |
Synthesis of a Glycolipid Analogue Towards the Design of a Biomimetic Cell MembraneSingh, Serena 17 August 2012 (has links)
The synthesis of the three 6”-deoxy-6”-thio glycolipid analogues β-D-Gal-(1→6)-β-D-Gal-(1→4)-β-D-Glu-(1→OCH2)-[1,2,3]-triazole-1-dodecane, β-D-Gal-(1→4)-β-D-Glu-(1→4)- β-D-Glu-(1→OCH2)-[1,2,3]-triazole-1-dodecane and β-D-Gal-(1→4)-β-D-Glu-(1→4)-β-D-Glu-(1→OCH2)-[1,2,3]-triazole-1-octadecane is presented here. Glycosylation at position O-4’ of a propargyl cellobioside glycosyl acceptor and position O-6’ of a propargyl lactoside glycosyl acceptor with a 6-thio-6-deoxy galactosyl donor gave rise to two unique trisaccharides that in turn underwent copper-catalyzed azide-alkyne cycloadditions with either 1-azidododecane or 1-azidooctadecane. The potential for each of these analogues to function as tethers of lipid bilayers to Au(111) was assessed primarily by differential capacitance experiments. Deposition of a bilayer of DMPC/cholesterol (70:30) by Langmuir-Blodgett (LB) transfer followed by Langmuir-Schaefer (LS) touch to a self-assembled monolayer of the O-6’ linked analogue, diluted with 1-β-D-thioglucose, failed. This led to simplifying the target architecture to diagnose the quality of the monolayers. A monolayer of the known monosaccharide 1-octadecane-4-(6-thio-β-D-galacto-pyranosyloxymethyl)-[1,2,3]-triazole1 prepared by LB transfer was found to support a lipid monolayer deposited by LS touch and this bilayer had the lowest minimum capacitance observed of 0.9 µF/cm2. An attempt to produce a bilayer by the same method using the trisaccharide bearing the C-18 alkane chain failed and this was attributed to high water solubility, which gave rise to poor organization at the air-water interface. A self-assembled monolayer of this variant went forward to produce a poor quality bilayer with a minimum capacitance of 7.1 µF/cm2, which was the lowest value obtained for the trisaccharide series of analogues. / Natural Sciences and Engineering Research Council of Canada (NSERC)
|
2 |
Novel Intrinsic and Extrinsic Approaches to Selectively Regulate Glycosphingolipid MetabolismKamani, Mustafa 08 August 2013 (has links)
Glycosphingolipid (GSL) metabolism is a complex process involving proteins and enzymes at distinct locations within the cell. Mammalian GSLs are typically based on glucose or galactose, forming glucosylceramide (GlcCer) and galactosylceramide (GalCer). Most GSLs are derived from GlcCer, which is synthesized on the cytosolic leaflet of the Golgi, while all subsequent GSLs are synthesized on the lumenal side. We have utilized both pharamacological and genetic manipulation approaches to selectively regulate GSL metabolism and better understand its mechanistic details. We have developed analogues of GlcCer and GalCer by substituting the fatty acid moiety with an adamanatane frame. The resulting adamantylGSLs are more water-soluble than their natural counterparts. These analogues selectively interfere with GSL metabolism at particular points within the metabolic pathway. At 40 µM, adaGlcCer prevents synthesis of all GSLs downstream of GlcCer, while also elevating GlcCer levels, by inhibiting lactosylceramide (LacCer) synthase and glucocerebrosidase, respectively. AdaGalCer specifically reduces synthesis of globotriaosylceramide (Gb3) and downstream globo-series GSLs. AdaGalCer also increases Gaucher disease N370S glucocerebrosidase expression, lysosomal localization and activity. AdaGSLs, therefore, have potential as novel therapeutic agents in diseases characterized by GSL anomalies and as tools to study the effects of GSL modulation.
Two predominant theories have been developed to explain how GlcCer accesses the Golgi lumen: one involving direct translocation from the cytosolic-to-lumenal leaflet of the Golgi by the ABC transporter P-glycoprotein (P-gp, ABCB1, MDR1), and the other involving retrograde transport of GlcCer by FAPP2 to the ER, followed by entry into the vesicular transport system for Golgi lumenal access. To examine the in vivo involvement of P-gp in GSL metabolism, we generated a knockout model by crossbreeding the Fabry disease mouse with the P-gp knockout mouse. HPLC analyses of tissue Gb3 levels revealed a tissue-specific reduction in MDR1/Fabry mice. TLC analyses, however, did not show such reduction. In addition, we performed a gene knockdown study using siRNA against P-gp and FAPP2. Results show these siRNA to have distinct effects on GSL levels that are cell-type specific. These results give rise to the prospect of unique therapeutic approaches by targeting P-gp or FAPP2 for synthesis inhibition of particular GSL pathways.
|
3 |
Novel Intrinsic and Extrinsic Approaches to Selectively Regulate Glycosphingolipid MetabolismKamani, Mustafa 08 August 2013 (has links)
Glycosphingolipid (GSL) metabolism is a complex process involving proteins and enzymes at distinct locations within the cell. Mammalian GSLs are typically based on glucose or galactose, forming glucosylceramide (GlcCer) and galactosylceramide (GalCer). Most GSLs are derived from GlcCer, which is synthesized on the cytosolic leaflet of the Golgi, while all subsequent GSLs are synthesized on the lumenal side. We have utilized both pharamacological and genetic manipulation approaches to selectively regulate GSL metabolism and better understand its mechanistic details. We have developed analogues of GlcCer and GalCer by substituting the fatty acid moiety with an adamanatane frame. The resulting adamantylGSLs are more water-soluble than their natural counterparts. These analogues selectively interfere with GSL metabolism at particular points within the metabolic pathway. At 40 µM, adaGlcCer prevents synthesis of all GSLs downstream of GlcCer, while also elevating GlcCer levels, by inhibiting lactosylceramide (LacCer) synthase and glucocerebrosidase, respectively. AdaGalCer specifically reduces synthesis of globotriaosylceramide (Gb3) and downstream globo-series GSLs. AdaGalCer also increases Gaucher disease N370S glucocerebrosidase expression, lysosomal localization and activity. AdaGSLs, therefore, have potential as novel therapeutic agents in diseases characterized by GSL anomalies and as tools to study the effects of GSL modulation.
Two predominant theories have been developed to explain how GlcCer accesses the Golgi lumen: one involving direct translocation from the cytosolic-to-lumenal leaflet of the Golgi by the ABC transporter P-glycoprotein (P-gp, ABCB1, MDR1), and the other involving retrograde transport of GlcCer by FAPP2 to the ER, followed by entry into the vesicular transport system for Golgi lumenal access. To examine the in vivo involvement of P-gp in GSL metabolism, we generated a knockout model by crossbreeding the Fabry disease mouse with the P-gp knockout mouse. HPLC analyses of tissue Gb3 levels revealed a tissue-specific reduction in MDR1/Fabry mice. TLC analyses, however, did not show such reduction. In addition, we performed a gene knockdown study using siRNA against P-gp and FAPP2. Results show these siRNA to have distinct effects on GSL levels that are cell-type specific. These results give rise to the prospect of unique therapeutic approaches by targeting P-gp or FAPP2 for synthesis inhibition of particular GSL pathways.
|
Page generated in 0.0486 seconds