• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 32
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

N-glycosylation et pathologies associées : étude de deux acteurs majeurs Man2C1 et Gdt1 / N- Glycosylation and related diseases : study of two majors players Man2C1 and Gdt1

Dulary, Eudoxie 29 June 2017 (has links)
Une altération du processus de N-glycosylation des protéines peut conduire à l’apparition de pathologies comme le cancer ou les "Congenital Disorders of Glycosylation" (CDG). La première partie de mon travail de thèse a porté sur l’étude de l’implication de la Man2C1 dans la cancérogenèse de la prostate. La Man2C1 est une glycosidase impliquée dans le processus ERAD « Endoplasmic reticulum associated degradation ». Nous avons montré le transfert de précurseurs oligosaccharidiques incomplets de type Man9Gn2 et Man5Gn2 sur les protéines, ainsi qu’une diminution de l’antennarisation des N-glycannes dans des lignées cancéreuses prostatiques. Cependant, même si nous avons observé une corrélation entre l’expression de la Man2C1 et l’activation de la voie PI3K/Akt aucun lien direct n’a été montré entre les deux phénomènes. La deuxième partie de mon travail de thèse a porté sur l’étude fonctionnelle de Gdt1p, orthologue fonctionnel de TMEM165, chez Saccharomyces cerevisiae. TMEM165, est une protéine golgienne dont la déficience conduit à l’apparition d’un CDG de type II. Nous avons étudié le rôle de Gdt1p dans le processus de glycosylation en utilisant différents mutants de pmr1p, unique transporteur de Ca2+/Mn2+ de l’appareil de Golgi. Notre étude a montré que le défaut de glycosylation observé est lié à une perturbation de l’homéostasie golgienne en Mn2+ et que la restauration de la glycosylation par le Mn2+ est associée au gradient calcique golgien, ce qui nous a permis de suggérer un rôle d’antiport Ca2+/Mn2+ pour Gdt1p. / N-glycosylation is a complex process localized in two cellular subcompartiments, the Endoplasmic reticulum and the Golgi apparatus. N-glycans are involved in physiological functions such as cell-cell interactions and also in the folding of N-glycoproteins newly synthesized. Disturbances of N-glycosylation process can lead to pathologies such as cancer or Congenital Disorders of Glycosylation.In the first part of my work, we studied the role of Man2C1 in prostate cancer genesis. Man2C1 is a glycosidase involved in the Endoplasmic reticulum associated degradation (ERAD). We pointed out the transfer of incomplete Man5Gn2 and Man9Gn2 oligosaccharide precursors and a decrease of N-linked glycan antennary profiles in prostate cancer cell lines. However, neither direct link between Man2C1 expression level, nor catalytic activity of Man2C1 and the level of activation of Akt pathway in prostate cancer cell lines have been demonstrated. In the second part of my work we analyzed the involvement of Gdt1p in N-glycosylation process in Saccharomyces cerevisiae. TMEM165 is a Golgi localized protein whose impairment leads to CDG type II. My study was based on TMEM165 ortholog in Saccharomyces cerevisiae, Gdt1p. We analyzed the involvement of Gdt1p in Glycosylation process using Pmr1p mutants, the only one Ca2+/Mn2+ transporter known in the Golgi apparatus. Our study has demonstrated that the glycosylation defect observed is due to a disturbance in manganese Golgi homeostasis and needs calcium gradient of golgi saccules. Our study confirmed Mn2+ transport function of Gdt1p and suggested an Ca2+/Mn2+ function for Gdt1p.
2

Elucidating the function of the suppressor of ppi1 locus 2

Broad, William January 2017 (has links)
No description available.
3

Funktionelle Charakterisierung des Hrd1-Proteins – einer Komponente der HRD-Ubiquitinligase

Fichtner, Susanne 26 June 2019 (has links)
In Eukaryoten werden sekretorische Proteine an zytoplasmatischen Ribosomen synthetisiert und in das endoplasmatische Retikulum (ER) transportiert, wo sie ihre biologisch aktive Struktur erhalten. Defekte Proteine, die durch Fehler in diesem Reifungsprozess entstehen, werden über den Prozess der „ER-assoziierten Protein Degradation“ (ERAD) abgebaut. Eine zentrale Komponente dieses Abbauweges ist die HRD‑Ligase, ein membranständiger Proteinkomplex, der das E3‑Enzym Hrd1 enthält. Einige publizierte Arbeiten lassen eine Beteiligung der Transmembrandomäne von Hrd1 an einem neuartigen Transportsystem für den Export von fehlgefalteten Proteinen aus dem ER vermuten. Im Rahmen dieser Arbeit konnten neue Erkenntnisse über die Bedeutung der Transmembranregion von Hrd1 für den Abbau von ERAD‑Substraten in dem Modellorganismus Saccharomyces cerevisiae gewonnen werden. Die Substitution von zwei Aminosäuren in der dritten Transmembranhelix von Hrd1 (Hrd1E84L, H101L) hemmt spezifisch den Abbau von fehlgefalteten ER-luminalen Proteinen, während die Prozessierung membrangebundener Hrd1-Substrate weitestgehend unbeeinflusst blieb. Daher zeigt die Hrd1‑Variante wahrscheinlich eine Störung im Transport von luminalen ERAD‑Substraten durch die ER Membran. Biochemische Analysen zeigen keine starken Veränderungen bei der Zusammensetzung der HRD-Ligase durch die Hrd1‑Variante. Allerdings ließen sich bei Anwendung von zielgerichtetem in vivo photocrosslinking deutliche Veränderungen in der räumlichen Orientierung der Ligaseuntereinheit Der1 zu Hrd1E84L, H101L beobachten. Da Der1 ausschließlich für den Abbau ER-luminaler ERAD-Substrate benötigt wird ist anzunehmen, dass die korrekte Ausrichtung von Der1 zu Hrd1 innerhalb der ER-Membran eine Voraussetzung für den Transport von ERAD‑Substraten in das Zytoplasma ist. Die Ergebnisse dieser Arbeit zeigen erstmals einen direkten Einfluss der Transmembranregion von Hrd1 auf den Abbau luminaler ERAD‑Zielproteine. / In eukaryotes, secretory proteins are synthesized on cytoplasmic ribosomes and transported into the endoplasmic reticulum (ER), where they obtain their biologically active structure. Defect proteins that arise from errors in this maturation process are degraded by the “ER-associated protein degradation” (ERAD) pathway. A central component of ERAD is the HRD-ligase, a membrane-bound protein complex that contains the ubiquitin ligase Hrd1. Some published work raised speculations on an involvement of this trans-membrane domain in a novel transport system for the export of misfolded proteins from the ER. In the course of this work new insights for the importance of the transmembrane domain of Hrd1 for the degradation of ERAD substrates in the model organism Saccharomyces cerevisiae were obtained. The substitution of two amino acids in the third trans-membrane helix of Hrd1 (Hrd1E84L, H101L) specifically impairs the turnover of misfolded ER-luminal proteins whereas the processing of membrane-bound Hrd1 substrates remained largely unaffected. The Hrd1 variant therefore displays most likely a defect in the transport of luminal ERAD substrates through the ER membrane. No major changes in the assembly of the HRD-ligase by the Hrd1 variant were detected. Still, in site specific in vivo photo-crosslinking assays substantial changes in the spatial orientation of the ligase subunit Der1 towards Hrd1E84L, H101L were detected. Der1 is exclusively required for the degradation of ER-luminal ERAD substrates. This implies that the proper alignment of Hrd1 and Der1 within the ER membrane is a prerequisite for the transport of ERAD substrates into the cytoplasm. This work shows for the first time a direct involvement of the trans-membrane region of Hrd1 in the degradation of luminal ERAD client proteins.
4

Etude de la calréticuline dans les syndromes myéloprolifératifs : de la détermination de la charge allélique aux mécanismes de dégradation des variants protéiques / Study of calreticulin in myeloproliferative neoplasms : from allelic burden determination to mechanisms of variant proteins degradation

Mansier, Olivier 14 December 2017 (has links)
Des mutations dans le gène de la calréticuline (CALR), codant pour une protéine résidente du réticulum endoplasmique (RE), ont été découvertes récemment dans les syndromes myéloprolifératifs (SMP). Elles sont associées à augmentation de prolifération cellulaire portant spécifiquement sur la lignée mégacaryocytaire. Ceci est le résultat d’une activation constitutive de la signalisation des voies JAK-STAT et MAP Kinases, consécutive à l’interaction des protéines mutantes CALR avec le récepteur à la thrombopoïétine. Plusieurs études ont montré la faible expression de ces protéines mutées dans les cellules, mais aucune n’a déterminé l’impact de leur expression sur l’homéostasie du RE ni les acteurs mis en jeu dans leur élimination. Dans ce travail, nous avons montré que l’expression des protéines CALR mutées ne perturbe pas sensiblement l’équilibre du RE et ne modifie pas la sensibilité des cellules à l’apoptose induite par un stress du RE. Nous avons ensuite démontré dans différents modèles, y compris des cellules engagées dans la différenciation mégacaryocytaire, que les faibles niveaux intracellulaires de variants protéiques CALR n’étaient pas liés à une sécrétion accrue dans le milieu extracellulaire ni à un défaut transcriptionnel. Cette faible expression est en fait la conséquence d’une dégradation mettant en jeu principalement la voie ERAD-protéasome. Dans ce processus, la reconnaissance de motifs glycans n’est pas impliquée, mais EDEM3 semble avoir un rôle majeur puisque son extinction augmente l’expression des formes mutées de CALR. La modulation de cette dégradation pourrait constituer une approche thérapeutique innovante dans les SMP. / Mutations in the calreticulin gene (CALR), encoding for an endoplasmic reticulum (ER) resident protein, have recently been discovered in myeloproliferative neoplasms (MPN). They are associated with an increased cell proliferation, specifically in the megakaryocytic lineage. This is the result of a constitutive activation of the JAK-STAT and MAP kinase pathways, following the interaction of mutant calreticulin proteins with the thrombopoietin receptor. Several studies have demonstrated that these mutated proteins are faintly expressed in cells, but none have determined the impact of their expression on ER homeostasis, nor addressed the actors at play in their degradation. In this work, we showed that the expression of mutated CALR proteins does not significantly disturb ER equilibrium, nor does it change the cellular sensitivity to ER stress-induced apoptosis. We next demonstrated in different models including cells committed towards megakaryocytic differentiation that the poor intracellular levels of variant CALR proteins are neither due to enhanced secretion into the extracellular medium, nor to transcriptional defects. This low-level expression is mainly the result of increased degradation, involving the ERAD-proteasome pathway. In this process, the recognition of glycan motifs is not engaged, but EDEM3 seems to be a key component as its extinction increases the expression levels of variant forms of CALR. Modulating this degradation process could represent a therapeutic option for MPN patients.
5

Orientia tsutsugamushi Modulates Endoplasmic Reticulum Stress to Benefit its Intracellular Growth and Targets NLRC5 to Inhibit Major Histocompatibility Complex I Expression

Rodino, Kyle G. 01 January 2018 (has links)
Scrub typhus, caused by the obligate intracellular bacterium Orientia tsutsugamushi, afflicts one million people annually. Despite being a global health threat, little is known about O. tsutsugamushi pathogenesis. Here, we demonstrate that O. tsutsugamushi modulates the ER and ER-associated processes as mechanisms of nutritional virulence and immune evasion. To obtain amino acids to fuel replication, O. tsutsugamushi simultaneously induces ER stress and the unfolded protein response (UPR) while inhibiting ER-associated degradation (ERAD) during early infection time points. During exponential growth, the bacterium releases the ER bottleneck, resulting in generation of ERAD-derived amino acids that it parasitized for replication. The O. tsutsugamushi effector, Ank4, is linked to this process, as it impedes ERAD when ectopically expressed. O. tsutsugamushi expression of ank4 peaks during the ERAD inhibition window, but is absent when the pathway is restored. These data reveal a novel mechanism of nutritional virulence, whereby an obligate intracellular pathogen coordinates the modulation of multiple ER-associated processes. Like other intracellular pathogens, O. tsutsugamushi inhibits expression of MHC-I, but it does so in a novel manner by degrading the master regulator of MHC-I, NLRC5. This impedes production of the MHC-I components, human leukocyte antigen A and Beta-2 microglobulin. The NLRC5-reduction mechanism recapitulates across diverse cell types, but the degree and duration of inhibition is cell type-specific. NLRC5 modulation and MHC-I inhibition are linked to another O. tsutsugamushi Ank, Ank5. NLRC5 is a putative interacting partner of Ank5. Moreover, NLRC5 and MHC-I levels are reduced in cells ectopically expressing Ank5. To our knowledge, these are the first examples of a pathogen modulating NLRC5 to negatively regulate MHC-I expression and of a bacterial effector interacting with NLRC5. As we learn more about the bacterium’s ability to regulate its host cell, a unifying theme has emerged: modulation of the ER and ER-associated pathways. These projects reveal two novel mechanisms of O. tsutsugamushi pathogenesis, strategies to acquire the amino acids needed for replication and to decrease MHC-I antigen presentation by the host cell. These insights help in understanding how O. tsutsugamushi and potentially other related pathogens co-opt host cell processes to cause disease.
6

TorsinA and protein quality control

Gordon, Kara Leigh 01 December 2011 (has links)
DYT1 dystonia (DYT1) is a disabling inherited neurological disorder with juvenile onset. The genetic mutation in DYT1 leads to the deletion of a glutamic acid (E) residue in the protein torsinA. The function of torsinA and how the mutation leads to DYT1 is poorly understood. We hypothesize that how efficiently the disease-linked mutant protein is cleared may be critical for DYT1 pathogenesis. Therefore we explored mechanisms of torsinA catabolism, employing biochemical, cellular, and animal-based approaches. We asked if torsinA(wt) and torsinA(DE) are degraded preferentially through different catabolic mechanisms, specifically the ubiquitin proteasome pathway (UPP) and autophagy. We determined that torsinA(wt) is cleared by autophagy while torsinA(DE) is efficiently degraded by the UPP suggesting degradation processes can modulate torsinA(DE) levels. Proteins implicated in recognizing motifs on torsinA(DE) for targeting to the UPP represent candidate proteins that may modify DYT1 pathogenesis. We examined how removal of the hydrophobic domain and mutation of glycosylated asparagine residues on torsinA altered stability and catabolic mechanism. We found the glycosylation sites on torsinA are important for stability modulate its degradation through the UPP. F-box G-domain protein 1 (FBG1) has been implicated in degradation of glycosylated ER proteins. We hypothesized that FBG1 would promote torsinA degradation and demonstrated that FBG1 modulates levels of torsinA in a non-canonical manner through the UPP and autophagy. We examined if lack of FBG1 in a torsinA(DE) mouse model altered motor phenotypes. We saw no effect which suggests FBG1 does not alter DYT1 pathogenesis despite its promotion of torsinA(DE) degradation. In addition, we explored a potential mechanism for the previously described role of torsinA in modulating cytoplasmic protein aggregation. We hypothesized this endoplasmic reticulum (ER) resident protein would indirectly alter cytoplasmic protein aggregation through modulation of ER stress. We employed a poly-glutamine expanded repeat protein and pharmacological ER stressors to determine that torsinA does not alter poly-glutamine protein aggregation nor ER stress in a mammalian system. In summary, this thesis suggests proteins involved in the catabolism of torsinA(DE) may modify DYT1 pathogenesis and that torsinA and its DYT1-linked mutant are model proteins for investigating ER protein degradation by the UPP and autophagy.
7

The Structural And Folding Characteristics Of The Plasmid-encoded Toxin From Enteroaggregative Escherichia Coli

Scaglione, Patricia 01 January 2008 (has links)
Plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli is a member of the autotransporter subfamily termed SPATE (serine protease autotransporters of Enterobacteriaceae). Autotransporters, which are the most common Gram-negative secreted virulence factors, contain three functional domains: an amino terminal leader sequence, a mature protein or passenger domain, and a carboxy-terminal β domain. The leader sequence targets the protein to the periplasmic space and the β domain then forms a β-barrel pore in the outer membrane of the bacterium which allows the passenger domain to enter the external milieu. In some cases the passenger domain is cleaved from the β-barrel at the extracellular surface to release a soluble toxin. This is thought to be a self-contained process that does not require chaperones or ATP for folding and export of the passenger domain. Pet produces cytotoxic effects through cleavage of its target, the actin-binding protein α- fodrin. Pet is secreted into the extracellular environment, but its target lies within the cytosol. To reach its target, Pet moves from the cell surface to the ER where it triggers ER-associated degradation (ERAD) to enter the cytosol. ERAD is a normal cellular process in which improperly folded proteins are exported from the ER to the cytosol for degradation. Other toxins that utilize this pathway are AB toxins such as cholera toxin (CT) and ricin. The A subunits of these toxins are thermally unstable, and this facilitates their ERAD-dependent translocation into the cytosol. Pet, however, is not an AB toxin. We predict that thermal unfolding is not the mechanism Pet employs to exploit ERAD. It was necessary to purify the toxin first in order to study the structural properties and ER export of Pet. Surprisingly, purified Pet eluted as two close peaks by size exclusion chromatography. Both peaks were Pet as demonstrated through immunoblotting. The folding efficiency of autotransporters has not been extensively elucidated, and based on our purification results, we hypothesized that there is inefficiency in the folding of autotransporters, specifically Pet. A toxicity assay showed that Pet peak one did not display cytopathic activity while Pet peak two did. CD and fluorescence spectroscopy measurements also detected structural differences between the two variants of Pet and demonstrated that Pet peak one was an unfolded variant of Pet peak two. Native gel electrophoresis and biophysical measurements indicated that Pet peak one did not exist as a dimer or aggregate. Our results indicate there are two forms of Pet, and thus the folding process of autotransporters appears to be inherently inefficient. Active Pet (peak two) was used for further biophysical measurements and biochemical assays. Circular dichroism and fluorescence spectroscopy showed that the secondary and tertiary structures of Pet are maintained at physiological temperature, 37°C. Thermal unfolding of Pet occurred at temperatures above 50°C. Fluorescence quenching of Pet was also performed and demonstrated that, at 37°C, there are solvent-exposed aromatic amino acids. The slight structural alterations to Pet at physiological temperature as well as the exposed hydrophobic residues could trigger ERAD. In addition, a modeled structure of Pet revealed a hydrophobic loop which is surface-exposed and a likely target for toxin-ERAD interactions. The data suggests that translocation of Pet mediated by ERAD can occur by a mechanism different from certain AB toxins. An open, hydrophobic conformation likely triggers ERAD, but may also contribute to poor folding.
8

Cellular And Molecular Mechanisms Of Toxin Resistance For Endoplasmic Reticulum Translocating Toxins

Massey, Christopher 01 January 2009 (has links)
The endoplasmic reticulum (ER) is the site of co- and post-translational modification for secretory proteins. In order to prevent vesicular transport and secretion of misfolded or misassembled proteins, a highly regulated mechanism called ER-associated degradation (ERAD) is employed. This pathway recognizes misfolded proteins in the ER lumen and targets them to the cytosol for ubiquitination and subsequent degradation via the 26S proteasome. Sec61 and Derlin-1 are ER pores through which export occurs. AB-type protein toxins such as cholera toxin (CT), Shiga toxin (ST), exotoxin A (ETA), and ricin have evolved means of exploiting the ERAD pathway in order to reach their cytosolic targets. AB-type protein toxins consist of a catalytic A-subunit and a cell-binding B-subunit. The B-subunit recognizes cell surface receptors for the toxin. This begins a series of vesicle trafficking events, collectively termed retrograde trafficking, that lead to the ER. Dissociation of the A and B subunits occurs in the ER, and only the A subunit enters the cytosol. The exact mechanism of A subunit translocation from the ER to the cytosol is unknown. Toxin translocation occurs through a pore in the ER membrane. Exit through the pore requires the toxin to be in an unfolded conformation. The current model for toxin translocation proposes that ER chaperones actively unfold the toxin A chain for translocation. After the translocation event, the toxin spontaneously refolds to an active conformation. Our model suggests that unfolding in the ER is spontaneous and refolding in the cytosol is dependent upon cytosolic chaperones. Based on our model, we hypothesize that blockage of the A subunit unfolding and/or the ERAD translocation step will confer a phenotype of non-harmful multi-toxin resistance to cells. In support of this model, we have shown that, at 37[degrees]C, the isolated catalytic subunit of cholera toxin (CTA1) is in an unfolded and protease sensitive confirmation that identifies the toxin as misfolded by the ERAD pathway. Stabilization of CTA1 via glycerol inhibits the loss of its tertiary structure. This stabilization results in decreased translocation from the ER to the cytosol and increased secretion of CTA1 to the extracellular medium. Treatment with glycerol also prevents CTA1 degradation by the 20S proteasome in vitro. These data indicate that the thermal stability of CTA1 plays an important role in intoxication. These data also suggest that stabilization of CTA1 tertiary structure is a potential target for therapeutic agents. Our model asserts that CTA1 behaves as a normal ERAD substrate upon dissociation from the holotoxin. In support of this model, we have shown that the ER luminal protein HEDJ, known to be involved in ERAD, interacts with CTA1. The interactions between HEDJ and CTA1 occur only at temperatures in which the toxin is in an unfolded conformation. We have also shown that HEDJ does not affect the thermally stability of CTA1 since there is no alteration in its pattern of temperature-dependent protease sensitivity. Alteration of the normal HEDJ-CTA1 interaction via a dominant-negative HEDJ construct resulted in decreased translocation from the ER to the cytosol and, as a result, decreased intoxication. Our work demonstrated toxin resistance can result through effects on toxin structure or ERAD chaperones. To identify other potential inhibitors, we developed a novel assay to detect the activity of other AB toxins and compared it with an established toxicity assay. We generated a Vero cell line that expressed a destabilized variant of enhanced green fluorescent protein (EGFP). These cells were used to monitor the Stx-induced inhibition of protein synthesis by monitoring the loss of EGFP fluorescence from cells. We screened a panel of 13 plant compounds, and indentified grape seed extract and grape pomace extract as inhibitors of Stx activity. Grape seed extract and grape pomace extract were also shown to block the toxic activities of ETA and ricin, providing the basis for a future high-throughput screen for multi-toxin inhibitors.
9

Aktivität Ubiquitin-konjugierender Enzyme an den RING-Ligasen des ERAD-Systems

Bagola, Katrin 05 June 2012 (has links)
Fehlerhafte sekretorische Proteine werden über einen speziellen Abbauweg, die ER-assoziierte Proteindegradation (ERAD), mit Lysin48-verknüpften Ubiquitinketten polyubiquitiniert und dem proteolytischen Abbau am 26S Proteasom zugeführt. In der Hefe Saccharomyces cerevisiae bilden die beiden ER-membranständigen RING-Ubiquitinligasen Hrd1 und Doa10 zentrale Komponenten im Ubiquitinierungsprozess. Das lösliche zytosolische Ubiquitin-konjugierende Enzym Ubc7, welches mit beiden Ligasen bei der Polyubiquitinierung von Substratproteinen zusammenwirkt, wird über den membranverankerten Co-Faktor Cue1 an die ER-Membran rekrutiert. Die in dieser Arbeit dargestellten Ergebnisse belegen zwei weitere Funktionen für Cue1 im Ubiquitinierungsprozess: Die Bindung von Ubc7 an einen carboxyterminalen Bereich in Cue1 führt zur Stimulation der Ubiquitinierungsaktivität von Ubc7 mit den RING-Ligasen. Darüber hinaus bewirkt die Ubiquitin-bindende CUE-Domäne in Cue1 eine Steigerung der Länge der Ubiquitinketten und deren Syntheserate, was zum effektiven Abbau einiger ER-membrangebundener Substratproteine beiträgt. Die durch Ubc7 synthetisierten Lysin48-verknüpften Ubiquitinketten werden in Abhängigkeit eines schleifenförmigen sauren Bereichs in Ubc7 gebildet. Entfernen dieses Bereichs resultiert im Abbruch der Ubiquitinierung nach Konjugation eines Monoubiquitins auf dem Substrat. An der Hrd1-Ligase werden durch Ubc7 polyubiquitinierte Proteine umgehend zum Proteasom transferiert. Für den Doa10-abhängigen Substratabbau ist die Funktion eines weiteren Ubiquitin-konjugierenden Enzyms, Ubc6, notwendig. Die hier gezeigten Daten weisen auf eine Ubc6-abhängige Verknüpfung von Ubiquitinmolekülen in einer Lysin11-abhängigen Weise hin. Eine Inhibition der Synthese Lysin11-verknüpfter Ubiquitinketten hatte jedoch keinen Effekt auf den Abbau von Substratproteinen. Stattdessen wurde der Abbau von Ubc6 selbst durch Unterbindung der Bildung Lysin27-verknüpfter Ubiquitinketten verhindert. / Aberrant secretory proteins are removed from the cell in a process termed „endoplasmic reticulum-associated protein degradation" (ERAD), as it screens the endoplasmic reticulum for unwanted polypeptides and triggers their elimination via the 26S proteasome. To this end, client proteins of the ERAD pathway are polyubiquitinated with lysine48-linked ubiquitin chains at the ER membrane. Two ER membrane-integrated RING ubiquitin ligases, Hrd1 and Doa10, constitute central components of the ubiquitination machinery in Saccharomyces cerevisiae. To polyubiquitinate substrate proteins, both ligases interact with the ubiquitin-conjugating enzyme Ubc7. Since Ubc7 itself is a soluble cytosolic protein, it is recruited to the ER-membrane by is anchoring factor Cue1. Results in this study reveal two additional functions of Cue1 in the ubiquitination reaction: First, binding of Ubc7 to the Cue1-carboxyterminus stimulates the ubiquitin chain formation by Ubc7 and the ligases. Second, the CUE domain within Cue1 increases the chain length and accelerates the synthesis of the polyubiquitin chain, which results in efficient degradation of certain substrate proteins. Formation of lysine48-linked ubiquitin chains by Ubc7 depends on an acidic loop within Ubc7. Deletion of this structure leads to inhibition of ubiquitin chain elongation after the initial substrate monoubiquitination. Client proteins, ubiquitinated by Ubc7 and Hrd1, are immediately transferred to the proteasome. For Doa10-dependent substrate degradation, the activity of another ubiquitin-conjugating enzyme, Ubc6, is required. Data shown here indicate a function of Ubc6 in the formation of lysine11-linked polyubiquitin, since mutation of this lysine residue resulted in the prevention of ubiquitin chain synthesis. However, expression of this ubiquitin mutant had no effect on substrate degradation. Moreover, the proteolysis of Ubc6 itself is inhibited by prevention of lysin27-linked polyubiquitin chain formation.
10

Die Funktion der HRD-Ubiquitinligase bei der Protein- Dislokation aus dem Endoplasmatischen Retikulum

Mehnert, Martin 13 May 2013 (has links)
Fehlgefaltete Proteine des sekretorischen Weges werden aus dem Endoplasmatischen Retikulum (ER) in das Zytosol transportiert und dort durch das Ubiquitin-Proteasom-System abgebaut. Dieser Qualitätskontrollmechanismus wird als Endoplasmatisches Retikulum-assoziierte Proteindegradation bezeichnet (ERAD). In der Bäckerhefe Saccharomyces cerevisiae stellt die HRD-Ubiquitinligase eine zentrale Komponente dieses Abbausystems dar. Eine Untereinheit dieses Multienzymkomplexes ist das ER-ständige Membranprotein Der1, das über den Faktor Usa1 an die Ubiquitinligase Hrd1 rekrutiert wird und ausschließlich für den Abbau löslicher luminaler ERAD-Substrate notwendig ist. Im Rahmen dieser Arbeit konnte gezeigt werden, dass der C-Terminus von Der1 die Interaktion zu Usa1 und damit die Rekrutierung des Proteins zur HRD-Ligase vermittelt. Usa1 wirkt nicht nur als Rekrutierungsfaktor, sondern induziert auch die Der1-Oligomerisierung. Punktmutationen in den Transmembrandomänen von Der1 beeinträchtigen die Dislokation luminaler Substratproteine aus dem ER. Um weitere Hinweise für eine Beteiligung von Der1 beim Substrattransport zu erhalten, wurde die Methode des zielgerichtetem in vivo photocrosslinking für Der1 angewendet. Hierbei wurden bestimmte Positionen von Der1 mit dem photoreaktiven Aminosäureanalogon p-Benzoylphenylalanin markiert, was die Ausbildung von Quervernetzungen von Der1 zu Interaktionspartnern nach einer UV-Bestrahlung ermöglichte. Schließlich konnte auf diese Weise eine räumliche Nähe der luminal exponierten Bereiche von Der1 zum Substratrezeptor Hrd3 gezeigt werden, während die Transmembransegmente Quervernetzungen zu Hrd1 ausbildeten. Beide Bereiche von Der1 konnten zudem mit einem luminalen ERAD-Substrat quervernetzt werden. Anhand dieser Ergebnisse wurde somit erstmals eine direkte Beteiligung von Der1 insbesondere in den ersten Schritten der Substratdislokation gezeigt, was eine Funktion von Der1 als zentrale Komponente des Exportkomplexes nahelegt. / Newly synthesized proteins of the secretory pathway are subjected to an efficient quality control system in the endoplasmic reticulum. In order to prevent a harmful aggregation misfolded proteins are exported via a largely unknown mechanism into the cytosol and degraded by the ubiquitin-proteasome system in a process termed ER associated degradation (ERAD). In the yeast Saccharomyces cerevisiae the HRD-ligase constitutes a central component of ERAD. A subunit of this multi-enzyme complex is the small multispanning membrane protein Der1, which is exclusively required for the degradation of misfolded ER luminal proteins but dispensable for the turnover of membrane-bound substrates. In this study a short conserved motif in the cytosolic carboxyterminus of Der1 was identified that mediates the binding to the HRD-ligase. Moreover, co-immunoprecipitation experiments show that Der1 forms oligomers, which relies on its assembly into the degradation complex. Mutations in the transmembrane domains of Der1 block the export of soluble proteins across the ER-membrane. To further investigate the function of Der1 in substrate dislocation an in vivo site-specific photocrosslinking approach was applied. Various positions of Der1 were labelled with the photoreactive amino acid analogue p-benzoyl-phenylalanine followed by UV irradiation of living cells expressing these Der1 constructs. The crosslinking experiments reveal a spatial proximity of ER luminal exposed parts of Der1 to the substrate receptor Hrd3. By contrast, the membrane-embedded domains of Der1 reside adjacent to the ubiquitin ligase Hrd1. Intriguingly, both regions also form crosslinks to a client protein. In summary the data of this work imply that multimeric Der1 initiates the export of aberrant polypeptides from the ER-lumen by threading such molecules into the ER-membrane and routing them to Hrd1 for ubiquitylation.

Page generated in 0.4648 seconds