• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • Tagged with
  • 12
  • 10
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Regulation von Fbw7 durch PI3K-abhängige Phosphorylierung und Charakterisierung eines konditionalen Usp28-Knockout-Mausmodells / Regulation of Fbw7 by PI3K-dependent phosphorylation and Characterization of a Usp28 conditional knockout mouse

Schülein, Christina January 2011 (has links) (PDF)
Das Proto-Onkoprotein Myc ist an der Entstehung und Aufrechterhaltung einer Vielzahl humaner Tumore entscheidend beteiligt. In der vorliegenden Arbeit wurde Serin 227 in Fbw7 als Ziel für eine PI3K-abhängige Phosphorylierung identifiziert. Diese Phosphorylierung führt zur Stabilisierung von Fbw7 und steigert die Fähigkeit von Fbw7, Substratproteine zu ubiquitinieren und abzubauen. Um die Bedeutung von Usp28 in der Myc-induzierten Tumorentstehung und in der normalen Gewebehomöostase zu untersuchen, wurde ein konditionales Knockout-Mausmodell für Usp28 charakterisiert. Mäuse mit einer Keimbahndeletion von Usp28 sind lebensfähig, fertil und phänotypisch unauffällig. Weder in Organen der Usp28-negativen Tiere, noch in entsprechenden murinen embryonalen Fibroblasten kann eine Destabilisierung von Myc festgestellt werden. Allerdings zeigen Fibroblasten mit heterozygotem Usp28-Verlust einen Proliferationsdefekt und in Eμ-Myc-Lymphomen dieses Genotyps werden tendenziell niedrigere Myc-Proteinmengen gefunden. Das tumorfreie Überleben ist bei den Eμ-Myc; Usp28 +/- Tieren verlängert. / The proto-oncoprotein Myc is involved in the genesis and maintenance of a large fraction of human tumors. In this work, I identified serine 227 in Fbw7 as a target for PI3K-dependent phosphorylation. The phosphorylation leads to stabilization of Fbw7 and enhances its ability to promote ubiquitination and degradation of its substrates. To investigate the role of Usp28 in Myc-dependent tumorigenesis and in tissue homeostasis I characterized a Usp28 conditional knockout mouse model. Mice with a germline deletion of Usp28 are viable, fertile and phenotypically normal. No decrease in Myc protein levels could be detected in organs or embryonic fibroblasts of Usp28- knockout mice. Surprisingly, embryonic fibroblasts with a heterozygous Usp28 deletion showed a proliferative defect and Eμ-Myc lymphomas of this genotype showed a tendency to reduced Myc protein levels, corresponding to a longer tumorfree survival of these animals.
2

Die E3-Ubiquitinligase HectD1 reguliert die Stabilität des antiapoptotischen Bcl-2-Familienmitglieds A1 / The E3-Ubiquitinligase HectD1 regulates the stabiliy of the anti-apoptotic Bcl-2-protein A1

Zovko, Josip January 2013 (has links) (PDF)
Die Bcl-2-Familienmitglieder A1 und sein humanes Homolog Bfl-1 gewährleisten das Überleben der Zelle. Gleichzeitig trägt eine Dysregulation der Expression von A1/ Bfl-1 zur Krebsentstehung bei. Die Stabilität von A1/ Bfl-1 wird durch deren Ubiquitinylierung sowie die anschließende proteosomale Degradation gesteuert. Mit Hilfe eines Yeast-Two-Hybrid-Screens wurde die E3-Ubiquitinligase HectD1 als potentieller Interaktionspartner von A1/ Bfl-1 identifiziert. Die Interaktion von A1 und HectD1 des Yeast-Two-Hybrid-Screens konnte in Säugerzellen bestätigt werden. Desweiteren konnte gezeigt werden, dass lediglich 87 Aminosäuren für eine Interaktion von HectD1 und A1 nötig sind. Da membrangebundenes HectD1 zu einer Translokation von zytosolischem A1 an die Zellmembran führt, kann man davon ausgehen, dass beide Proteine auch in vivo miteinander interagieren. Eine dominant negative HectD1-Mutante schließlich beeinflusst die Ubiqutinylierung von A1 und führt somit zu dessen Stabilisierung. Diese Daten legen nahe, dass HectD1 ein wichtiger negativer Regulator von A1/ Bfl-1 ist und dass HectD1 für die Regulierung der A1/ Bfl-1-Proteinmenge in (Krebs)zellen sehr wichtig ist. / The Bcl-2 family members A1 and its human orthologue Bfl-1 support survival of cells. Dysregulation of their expression contributes to cancer. Stability of A1/ Bfl-1 is controlled by ubiquitination followed by degradation via the proteasome. Using a yeast two-hybrid screen we identified the E3 ubiquitin-ligase HectD1 as potential A1/ Bfl-1-interacting partner. We confirmed interaction of these two proteins in mammalian cells. Only 87 amino acids of HectD1 are necessary for the interaction of the protein with A1. Membrane-bound HectD1 recruits A1 to the membranes further supporting the notion that the two proteins interact in vivo. Importantly, dominant negative versions of HectD1 interfered with ubiquitination of A1 stabilizing the protein. These findings indicate that HectD1 maybe an important negative regulator of the A1/ Bfl-1 anti-apoptotic protein, providing an important target for interfering with dysregulation of A1/ Bfl-1 in cancer.
3

From recognition to reaction: Mechanistic analysis of the interactions of the HECT ligase E6AP with ubiquitin / Von der Erkennung bis zur Reaktion: Mechanistische Analyse der Wechselwirkungen der HECT-Ligase E6AP mit Ubiquitin

Ries, Lena Kerstin January 2020 (has links) (PDF)
The ubiquitination of proteins controls a multitude of physiological processes. This versatility of ubiquitin as a molecular signal arises from the diverse ways by which it can be attached to target proteins. Different ubiquitination patterns are then translated into different downstream consequences. Due to the enormous complexity of possible ubiquitin modifications, the ubiquitination machinery must be highly specific and tightly controlled. Ubiquitination proceeds through an enzymatic cascade, the last step of which is catalyzed by the E3 enzyme family. E3 enzymes are the crucial regulators since they dictate the specificity of substrate selection and modification. Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity, regulation and specificity in this crucial ligase are incompletely understood. One aim of this study was to unravel the role of the a1’-helix N-terminal to the HECT domain that was found to be a key element mediating regulation and oligomerization in other HECT ligases. I found that most N-terminally extended HECT domain constructs were insoluble when expressed in E. coli, indicating that additional regions N-terminal to the tested fragments may be essential to protect this highly hydrophobic helix from causing aggregation. Another question addressed in this study was how E6AP builds ubiquitin chains. Using single-turnover experiments, I showed that ubiquitin-loaded E6AP is unable to transfer an additional ubiquitin molecule onto a stably linked ubiquitin-E6AP complex. This indicates that E6AP cannot assemble chains on its active site and may instead follow a sequential addition mechanism in which one ubiquitin molecule is transferred at a time to the target protein. Using NMR spectroscopy and extensive mutational analyses, the determinants of ubiquitin recognition by the C-lobe of E6AP were unraveled and assigned to particular steps in the catalytic cycle. A functionally critical interface was identified that is specifically required during thioester formation between the C-terminus of ubiquitin and the ligase active site. This interface resembles the one utilized by NEDD4-type enzymes, suggesting a conserved ubiquitin binding mode across HECT ligases, independent of their linkage specificities. Moreover, I identified critical surface patches on ubiquitin and in the N- and C-terminal portions of the catalytic domain of E6AP that are important for the subsequent step of isopeptide bond formation. I also uncovered key determinants of the Lys48-linkage specificity of E6AP, both in the E6AP HECT domain and ubiquitin itself. This includes the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site, Lys48. It is thus tempting to speculate that ubiquitin linkage formation by E6AP is substrate-assisted. Taken together, my results improve our mechanistic understanding of the structure-function relationship between E6AP and ubiquitin, thus providing a basis for ultimately manipulating the functions of this HECT ligase for therapeutic applications. / Die Ubiquitinierung von Proteinen ist an nahezu jedem physiologischen Prozess beteiligt. Die Vielseitigkeit mit der Ubiquitin als molekulares Signal fungiert, rührt von den vielfältigen Möglichkeiten her, wie es an Zielproteine gebunden werden kann. Verschiedene Ubiquitinierungsmuster rufen unterschiedliche biologische Ereignisse hervor. Angesichts der enormen Komplexität möglicher Ubiquitinierungsmodifikationen muss die Ubiquitinierungs-maschinerie hochspezifisch und streng kontrolliert sein. Die Ubiquitinierung erfolgt über eine enzymatische Kaskade. Der letzte Schritt wird hierbei durch die Enzymfamilie der Ubiquitin-Ligasen katalysiert. Ubiquitin-Ligasen sind primär für die Spezifität in Substraterkennung und Ubiquitin-Kettenbildung verantwortlich. Misregulation der HECT-Ligase E6AP fördert die durch humane Papillomaviren induzierte Tumorentwicklung im Gebärmutterhals und ist mit zwei schweren neurologischen Krankheiten verbunden. Strukturelle Einzelheiten über den Mechanismus, die Regulation und die Spezifität dieser wichtigen Ligase sind jedoch weitgehend unbekannt. Für verschiedene HECT-Ligasen wurde gezeigt, dass die a1‘-Helix N-terminal zur HECT-Domäne ein Schlüsselelement für die Regulation und den Oligomerisierungszustand der Enzyme darstellt. In dieser Arbeit konnte gezeigt werden, dass die Helix eine wichtige Funktion für die Stabilität von E6AP erfüllt. Der Großteil N-terminal verlängerter, in E. coli exprimierter HECT-Domänen-Konstrukte war unlöslich, was darauf hindeutet, dass N-terminal gelegene Regionen hydrophobe Bereiche des Proteins vor Aggregation schützen. Eine weitere Fragestellung dieser Arbeit befasste sich mit dem Mechanismus der Ubiquitin-Kettenbildung durch E6AP. Mit ‘single-turnover‘-Experimenten konnte gezeigt werden, dass ein über einen Thioester gebundenes Ubiquitin von E6AP nicht auf einen stabil verknüpften Ubiquitin-E6AP-Komplex übertragen werden kann. Dies deutet daraufhin, dass E6AP keine Ketten auf dem katalytischen Cystein aufbauen kann und stattdessen einem sequentiellen Additionsmechanismus der Ubiquitin-Kettenbildung folgt. Mithilfe von NMR Spektroskopie und umfangreicher Mutagenese-Studien wurde eine Interaktion zwischen dem C-Lobe von E6AP und Ubiquitin gefunden, die während der Thioesterbildung zwischen dem C-Terminus von Ubiquitin und dem aktiven Zentrum von E6AP gebraucht wird. Diese Interaktionsfläche ähnelt derer der NEDD4-Familie, was auf einen konservierten Bindungsmodus der HECT-Ligasen an Ubiquitin im ersten Reaktionsschritt hindeutet, ungeachtet der jeweiligen Kettenspezifitäten. Verschiedene Oberflächen auf Ubiquitin und E6AP, sowohl auf dem C-Lobe als auch auf dem N-Lobe, konnten identifiziert werden, die für die Bildung einer Isopeptidbindung zwischen zwei Ubiquitin-Molekülen von Bedeutung sind. Neben dem C-Terminus von E6AP wurde eine hydrophile Oberfläche auf Ubiquitin in unmittelbarer Nähe zum Akzeptor Lys48 gefunden, die wichtig für die Lys48-spezifische Ubiquitin-Kettenbildung ist. Der Gedanke liegt nahe, dass die Ubiquitin-Kettenbildung durch E6AP über Substratunterstützte Katalyse verläuft. Zusammenfassend erweitern diese Ergebnisse maßgeblich unser Verständnis der Erkennung von Ubiquitin durch die HECT-Ligase E6AP und können möglicherweise dazu beitragen Wirkstoffe zu entwickeln, welche eine Fehlregulierung von E6AP ausgleichen können.
4

Regulation of MYC Activity by the Ubiquitin-Proteasome System / Regulation der MYC Aktivität durch das Ubiquitin-Proteasom-System

Jänicke, Laura Annika January 2015 (has links) (PDF)
The oncogenic MYC protein is a transcriptional regulator of multiple cellular processes and is aberrantly activated in a wide range of human cancers. MYC is an unstable protein rapidly degraded by the ubiquitin-proteasome system. Ubiquitination can both positively and negatively affect MYC function, but its direct contribution to MYC-mediated transactivation remained unresolved. To investigate how ubiquitination regulates MYC activity, a non-ubiquitinatable MYC mutant was characterized, in which all lysines are replaced by arginines (K-less MYC). The absence of ubiquitin-acceptor sites in K-less MYC resulted in a more stable protein, but did not affect cellular localization, chromatin-association or the ability to interact with known MYC interaction partners. Unlike the wild type protein, K-less MYC was unable to promote proliferation in immortalized mammary epithelial cells. RNA- and ChIP-Sequencing analyses revealed that, although K-less MYC was present at MYC-regulated promoters, it was a weaker transcriptional regulator. The use of K-less MYC, a proteasomal inhibitor and reconstitution of individual lysine residues showed that proteasomal turnover of MYC is required for MYC target gene induction. ChIP-Sequencing of RNA polymerase II (RNAPII) revealed that MYC ubiquitination is dispensable for RNAPII recruitment and transcriptional initiation but is specifically required to promote transcriptional elongation. Turnover of MYC is required to stimulate histone acetylation at MYC-regulated promoters, which depends on a highly conserved region in MYC (MYC box II), thereby enabling the recruitment of BRD4 and P-TEFb and the release of elongating RNAPII from target promoters. Inhibition of MYC turnover enabled the identification of an intermediate in MYC-mediated transactivation, the association of MYC with the PAF complex, a positive elongation factor, suggesting that MYC acts as an assembly factor transferring elongation factors onto RNAPII. The interaction between MYC and the PAF complex occurs via a second highly conserved region in MYC’s amino terminus, MYC box I. Collectively, the data of this work show that turnover of MYC coordinates histone acetylation with recruitment and transfer of elongation factors on RNAPII involving the cooperation of MYC box I and MYC box II. / Der Transkriptionsfaktor MYC ist an der Regulation einer Vielzahl biologischer Prozesse beteiligt ist und spielt bei der Tumorentstehung und des Tumorwachstum eine entscheidende Rolle. MYC ist ein kurzlebiges Protein, das durch das Ubiquitin-Proteasom-System abgebaut wird. Die Ubiquitinierung von MYC hat auch einen stimulierenden Einfluss auf dessen transkriptionelle Aktivität. Dabei blieb jedoch der Mechanismus, der dieser Beobachtung zugrunde liegt, bislang ungeklärt. Um den direkten Einfluss von Ubiquitinierung auf die Aktivität von MYC zu untersuchen, wurde in der vorliegenden Arbeit eine MYC Mutante analysiert, in der alle Lysine zu Argininen mutiert wurden (K-less MYC). Die Mutation der Ubiquitin-Verknüpfungsstellen resultierte in einem stabileren Protein, hatte jedoch keinen Einfluss auf die zelluläre Lokalisation oder Assoziation mit bekannten Interaktionspartnern. Im Vergleich zu Wildtyp (WT) MYC war K-less MYC jedoch in der Vermittlung MYC-induzierter biologischer Phänotypen stark beeinträchtigt. Mittels RNA- und ChIP-Sequenzierungen konnte gezeigt werden, dass K-less MYC zwar an MYC-regulierte Promotoren bindet, in der transkriptionellen Aktivität aber stark beeinträchtigt ist und diese Zielgene nicht aktivieren kann. Dabei war K-less MYC noch in der Lage, RNA Polymerase II (RNAPII) zu den Zielpromotoren zu rekrutieren und die Transkription dort zu initiieren, jedoch war der Übergang zur Elongation blockiert. Die Verwendung eines Proteasom-Inhibitors sowie die Rekonstitution einzelner Lysine in K-less MYC zeigten, dass der proteasomale Abbau von MYC für die Aktivierung von Zielgenen benötigt wird. Der proteasomale Abbau ist für die Histon-Acetylierung von Bedeutung, die von einer hoch konservieren Region in MYC, der MYC Box II, abhängt. Durch die WT MYC-vermittelte Induktion der Histon-Acetylierung können folglich die Proteine BRD4 und P-TEFb an die Promotoren rekrutiert werden. Diese Proteine spielen bei dem Übergang der initiierenden RNAPII zur elongierenden RNAPII eine essentielle Rolle. Darüber hinaus ermöglichte die Inhibition des MYC Abbaus die Identifizierung eines Zwischenschritts der MYC-abhängigen Transaktivierung: die Assoziation von MYC mit dem positiven Elongationskomplex, dem PAF-Komplex. Dieser wird über eine zweite hochkonservierte Region in MYC, der MYC Box I, rekrutiert. Somit kann angenommen werden, dass MYC als eine Verbindungsstelle fungiert, die positive Elongationsfaktoren auf die RNAPII transferiert. Zusammenfassend resultieren die Daten dieser Arbeit in einem Model, nach dem der proteasomale Abbau von MYC die Histon-Acetylierung mit der Rekrutierung und dem Transfer von Elongationsfaktoren auf die RNAPII koordiniert, was der Kooperation von MYC Box I und MYC Box II bedarf.
5

Einfluss posttranslationaler Modifikationen auf die Funktion des Prototyp Foamy Virus Hüllproteins

Lüftenegger, Daniel 11 April 2008 (has links) (PDF)
Die Familie der Retrovirinae wird in zwei Unterfamilien untergliedert, die Orthoretrovirinae und die Spumaretrovirinae. Foamyviren stellen aufgrund einiger besonderer Eigenschaften die einzigen Vertreter dieser Unterfamilie, die sie als Bindeglied zwischen den Retroviren und den Hepadnaviren erscheinen lassen. So erfolgt beispielsweise die reverse Transkription des viralen Genoms nicht erst nach Eintritt in die Zielzelle, sondern, anders als bei Orthoretroviren, bereits in der Produzentenzelle noch während oder kurz nach der Morphogenese. Diese Eigenschaft teilen Foamyviren mit den Hepadnaviren ebenso wie die obligate Koexpression der Kapsidproteine mit den viralen Hüllproteinen für die Freisetzung von Viruspartikeln. Im Gegensatz zu Orthoretroviren sind Foamyviren folglich nicht in der Lage virusähnliche Partikel (VLP) zu sekretieren und die spezifische Funktion des PFV Env Proteins kann nicht durch heterologe Hüllproteine übernommen werden. Die Synthese des PFV Env Vorläuferproteins erfolgt am rER, wobei es eine Typ III Membrantopologie erhält, mit sowohl dem N- als auch dem C-Terminus im Zytoplasma. Während des Transports des Proteins zum Ort der Partikelknospung, wird es posttranslational im Golgi-Apparat, oder dem trans-Golgi Netzwerk, durch Furin oder eine Furin-ähnliche Protease in drei partikelassoziierte Untereinheiten prozessiert. Eine Partikelassoziation retroviraler Signalpeptide ist bislang nur für Foamyviren nachgewiesen worden, genauso wie eine essentielle Rolle dieses Proteins bei der Interaktion zwischen dem
6

Identification of an atypical peptide binding mode of the BTB domain of the transcription factor MIZ1 with a HUWE1-derived peptide / Identifikation eines neuen Bindungsmodus zwischen der BTB-Domäne des Transkriptionsfaktors MIZ1 und eines Peptids aus der HECT-E3-Ligase HUWE1

Orth, Barbara January 2021 (has links) (PDF)
Ubiquitination is a posttranslational modification with immense impact on a wide range of cellular processes, including proteasomal degradation, membrane dynamics, transcription, translation, cell cycle, apoptosis, DNA repair and immunity. These diverse functions stem from the various ubiquitin chain types, topologies, and attachment sites on substrate proteins. Substrate recruitment and modification on lysine, serine or threonine residues is catalyzed by ubiquitin ligases (E3s). An important E3 that decides about the fate of numerous substrates is the HECT-type ubiquitin ligase HUWE1. Depending on the substrate, HUWE1 is involved in different processes, such as cell proliferation and differentiation, DNA repair, and transcription. One of the transcription factors that is ubiquitinated by HUWE1 is the MYC interacting zinc finger protein 1 (MIZ1). MIZ1 is a BTB/POZ (Bric-à-brac, Tramtrack and Broad-Complex/Pox virus and zinc finger) zinc finger (ZF) protein that binds to DNA through its 13 C2H2-type zinc fingers and either activates or represses the transcription of target genes, including genes involved in cell cycle arrest, such as P21CIP1 (CDKN1A). The precise functions of MIZ1 depend on its interactions with the MYC-MAX heterodimer, but also its heterodimerization with other BTB-ZF proteins, such as BCL6 or NAC1. How MIZ1 interacts with HUWE1 has not been studied and, as a consequence, it has not been possible to rationally develop tools to manipulate this interaction with specificity in order to better understand the effects of the interaction on the transcriptional function of MIZ1 on target genes or processes downstream. One aspect of my research, therefore, aimed at characterizing the MIZ1-HUWE1 interaction at a structural level. I determined a crystal structure of the MIZ1-BTB-domain in complex with a peptide, referred to as ASC, derived from a C terminal region of HUWE1, previously named ‘activation segment’. The binding mode observed in this crystal structure could be validated by binding and activity assays in vitro and by cell-based co-IP experiments in the context of N-terminally truncated HUWE1 constructs. I was not able to provide unambiguous evidence for the identified binding mode in the context of full-length HUWE1, indicating that MIZ1 recognition by HUWE1 requires yet unknown regions in the cell. While the structural details of the MIZ1-HUWE1 interaction remains to be elucidated in the context of the full-length proteins, the binding mode between MIZ1BTB and ASC revealed an interesting, atypical structural feature of the BTB domain of MIZ1 that, to my knowledge, has not been described for other BTB-ZF proteins: The B3 region in MIZ1BTB is conformationally malleable, which allows for a HUWE1-ASC-peptide-mediated β-sheet extension of the upper B1/B2-strands, resulting in a mixed, 3 stranded β-sheet. Such β-sheet extension does not appear to occur in other homo- or heterodimeric BTB-ZF proteins, including MIZ1-heterodimers, since these proteins typically possess a pre-formed B3-strand in at least one subunit. Instead, BCL6 co repressor-derived peptides (SMRT and BCOR) were found to extend the lower β-sheet in BCL6BTB by binding to an adjacent ‘lateral groove’. This interaction follows a 1:1 stoichiometry, whereas the MIZ1BTB-ASC-complex shows a 2:1 stoichiometry. The crystal structure of the MIZ1BTB-ASC-complex I determined, along with comparative binding studies of ASC with monomeric, homodimeric, and heterodimeric MIZ1BTB variants, respectively, suggests that ASC selects for MIZ1BTB homodimers. The structural data I generated may serve as an entry point for the prediction of additional interaction partners of MIZ1 that also have the ability to extend the upper β-sheet of MIZ1BTB. If successful, such interaction partners and structures thereof might aid the design of peptidomimetics or small-molecule inhibitors of MIZ1 signaling. Proof-of-principle for such a structure-guided approach targeting BTB domains has been provided by small-molecule inhibitors of BCL6BTB co-repressors interactions. If a similar approach led to molecules that interfere with specific interactions of MIZ1, they would provide intriguing probes to study MIZ1 biology and may eventually allow for the development of MIZ1-directed cancer therapeutics. / Ubiquitinierung ist eine posttranslationale Modifikation mit weitreichendem Einfluss auf eine Vielzahl von zellulären Prozessen, wie proteasomale Degradation, Membrandynamik, Transkription, Translation, Zellzyklus, Apoptose, DNA-Reparatur und Immunität. Grundlage für diese Diversität ist die Möglichkeit, dass Substrate an unterschiedlichen Stellen mit verschiedenen Ubiquitin-Kettentypen modifiziert werden können. Die Substratrekrutierung und -modifikation an Lysin-, Serin oder Threonin Resten wird durch Ubiquitin-Ligasen (E3s) katalysiert. Eine wichtige Ubiquitin-Ligase, die zahlreiche Substrate reguliert, ist die HECT-Ligase HUWE1. Abhängig vom Substrat ist HUWE1 an verschiedenen Prozessen, wie der Zellproliferation und -differenzierung, DNA-Reparatur, aber auch Transkription beteiligt. Ein Transkriptionsfaktor, der von HUWE1 ubiquitiniert wird, ist MIZ1 (MYC interacting zinc finger protein 1). MIZ1 ist ein BTB/POZ (Bric-à-brac, Tramtrack and Broad-Complex/Pox Virus and Zinc finger) Zinkfinger(ZF)-Protein, das über seine 13 C2H2 Zinkfinger an DNA bindet und so die Transkription von verschiedenen Zielgenen aktivieren oder reprimieren kann. MIZ1-Zielgene sind unter anderem am Zellzyklusarrest beteiligt, wie z.B. das Gen P21CIP1 (CDKN1A). Die biologischen Funktionen von MIZ1 werden unter anderem durch seine Interaktion mit dem MYC MAX-Heterodimer, aber auch durch Heterodimerisierung mit anderen BTB ZF Proteinen, wie BCL6 oder NAC1, reguliert. Wie MIZ1 mit der HUWE1-Ligase interagiert, wurde bislang strukturell noch nicht untersucht, weshalb noch nicht gezielt kleine Moleküle zur Manipulation der Interaktion entwickelt werden konnten, um Einfluss auf die transkriptionellen Funktionen von MIZ1 oder seiner Zielgene zu nehmen. Meine Untersuchungen zielten daher unter anderem darauf ab, die MIZ1-HUWE1-Interaktion auf struktureller Ebene zu charakterisieren. Ich konnte eine Kristallstruktur der MIZ1-BTB-Domäne in Komplex mit dem HUWE1-Peptid ASC lösen, dessen Sequenz in der C-terminalen Region von HUWE1 zu finden ist und zuvor als „activation segment“ definiert wurde. Der in dieser Kristallstruktur beobachtete Bindungsmodus konnte durch Bindungs- und Aktivitätsassays in vitro und durch co-IP-Experimente in zellbasierten Assays validiert werden, jedoch nur im Zusammenhang mit N-terminal verkürzten HUWE1 Konstrukten. Es war mir nicht möglich, diesen Bindungsmodus im Kontext des HUWE1-Proteins voller Länge nachzuweisen, was darauf hindeutet, dass bei der MIZ1-Erkennung durch HUWE1 in der Zelle andere Regionen beteiligt sein könnten. Während die strukturellen Details der MIZ1-HUWE1-Interaktion im Kontext der Proteine voller Länge noch aufgeklärt werden müssen, zeigte der Bindungsmodus zwischen MIZ1BTB und ASC ein atpyisches Strukturmerkmal der BTB-Domäne von MIZ1, das meines Wissens bislang in keinem anderen BTB-ZF-Protein beschrieben wurde: Die B3-Region in MIZ1BTB zeigt eine untypische konformationelle Flexibilität, die es erlaubt, dass das HUWE1-ASC-Peptid die B1/B2-Stränge im oberen Segment von MIZ1BTB zu einem 3-strängigen β-Faltblatt erweitert. Eine solche β-Faltblatt-Erweiterung scheint in anderen homo- oder heterodimeren BTB-ZF-Proteinen, einschließlich MIZ1-Heterodimeren, nicht aufzutreten, da diese Proteine typischerweise bereits einen B3-Strang in mindestens einer Untereinheit aufweisen. Stattdessen konnte beobachtet werden, dass Peptidliganden, wie sie von den BCL6 Co-Repressoren SMRT und BCOR abgeleitet wurden, ein β-Faltblatt im unteren Segment von BCL6BTB erweitern, indem sie in der sogenannten „lateral groove“ binden, die in unmittelbarer Nähe des betreffenden β-Faltblattes lokalisiert ist. Während die Interaktion von BCL6BTB mit Co-Repressor-Peptiden eine 1:1 Stöchiometrie zeigt, beobachtete ich für den MIZ1BTB-ASC-Komplex eine 2:1 Stöchiometrie. Die Kristallstruktur des MIZ1BTB-ASC-Komplexes, zusammen mit Bindungsassays, die die Interaktion zwischen ASC und monomerem, homodimerem bzw. heterodimerem MIZ1BTB untersuchten, deuten darauf hin, dass ASC spezifisch mit MIZ1BTB-Homodimeren interagiert. Daher könnten die von mir gewonnenen Strukturinformationen dazu dienen, weitere MIZ1-Bindungspartner vorherzusagen. Falls erfolgreich, könnten die neu identifizierten Interaktionspartner und zugehörige Strukturen dazu genutzt werden, Peptidomimetika und niedermolekulare Inhibitoren zu entwickeln, die spezifische Interaktionen von MIZ1 und die zugehörigen zellulären Prozesse stören und somit als Werkzeuge zum besseren Verständnis der MIZ1 Biologie dienen könnten. Vorbild dabei können zahlreiche niedermolekulare Verbindungen sein, die zur Störung der Co-Repressor-Peptid-Bindung an BCL6BTB entwickelt wurden. Wenn es auf ähnliche Weise gelänge, spezifischen Einfluss auf die transkriptionelle Funktion von MIZ1 zu nehmen, so könnte dies von hohem therapeutischen Nutzen in der Bekämpfung verschiedener Krebsarten sein.
7

Einfluss posttranslationaler Modifikationen auf die Funktion des Prototyp Foamy Virus Hüllproteins

Lüftenegger, Daniel 26 March 2008 (has links)
Die Familie der Retrovirinae wird in zwei Unterfamilien untergliedert, die Orthoretrovirinae und die Spumaretrovirinae. Foamyviren stellen aufgrund einiger besonderer Eigenschaften die einzigen Vertreter dieser Unterfamilie, die sie als Bindeglied zwischen den Retroviren und den Hepadnaviren erscheinen lassen. So erfolgt beispielsweise die reverse Transkription des viralen Genoms nicht erst nach Eintritt in die Zielzelle, sondern, anders als bei Orthoretroviren, bereits in der Produzentenzelle noch während oder kurz nach der Morphogenese. Diese Eigenschaft teilen Foamyviren mit den Hepadnaviren ebenso wie die obligate Koexpression der Kapsidproteine mit den viralen Hüllproteinen für die Freisetzung von Viruspartikeln. Im Gegensatz zu Orthoretroviren sind Foamyviren folglich nicht in der Lage virusähnliche Partikel (VLP) zu sekretieren und die spezifische Funktion des PFV Env Proteins kann nicht durch heterologe Hüllproteine übernommen werden. Die Synthese des PFV Env Vorläuferproteins erfolgt am rER, wobei es eine Typ III Membrantopologie erhält, mit sowohl dem N- als auch dem C-Terminus im Zytoplasma. Während des Transports des Proteins zum Ort der Partikelknospung, wird es posttranslational im Golgi-Apparat, oder dem trans-Golgi Netzwerk, durch Furin oder eine Furin-ähnliche Protease in drei partikelassoziierte Untereinheiten prozessiert. Eine Partikelassoziation retroviraler Signalpeptide ist bislang nur für Foamyviren nachgewiesen worden, genauso wie eine essentielle Rolle dieses Proteins bei der Interaktion zwischen dem
8

Charakterisierung von humanem PI31 und neuen alternativen Spleißvarianten des PI31 Gens PSMF1

Schwarz, Tobias 01 April 2009 (has links)
Das Ubiquitin-Proteasom-System eukaryotischer Zellen spielt eine zentrale Rolle beim Abbau von fehlgefalteten und nicht mehr benötigten Proteinen. Damit erfüllt es regulatorische Funktionen bei zellulären Prozessen wie z.B. dem Zellzyklus und der Transkription. Das Protein Proteasominhibitor 31 (PI31) wurde als Inhibitor des Proteasoms in vitro charakterisiert. Des weiteren wurde gezeigt, daß überexprimiertes PI31 im murinen System ein Modulator der Assemblierung des Immunoproteasoms (i20S) ist. Über die Funktion und Regulation von PI31 im humanen System war bisher nichts bekannt und wurde deshalb in dieser Arbeit untersucht. Es konnte gezeigt werden, daß neben dem PI31-Transkript mindestens neun weitere alternative Spleißvarianten des humanen PI31 Gens PSMF1 existieren. Die PI31-Isoformen V2 bis V10 unterscheiden sich von PI31 (V1) teils durch eine fehlende N-terminale Domäne oder einen veränderten C-Terminus. Die Isoform V5 wird als einzige gewebespezifisch in Testikeln exprimiert und ist im Zellkern lokalisiert. Ausschließlich die Überexpression der Isoform V3 führt zur Inhibition der proteasomalen Aktivität in vivo. Ein modulatorischer Einfluß von PI31 oder einer der Isoformen auf die Assemblierung des humanen i20S bestätigte sich dagegen nicht. Die Überexpression von PI31 und V3 in humanen Zellen führte indes zu einer Akkumulation und verzögerten Degradation von proteasomalen Substraten. Es wurde außerdem gezeigt, daß die Expression von humanem PI31 durch virusassoziierte Stimuli wie dsRNA und Typ I-Interferone induziert werden kann. Für die 3kb lange 3’UTR der PI31-mRNA konnte zusätzlich nachgewiesen werden, daß sie inhibitorisch auf die Expression wirkt und somit eine regulatorische Funktion besitzt. In Zusammenhang mit der von Kirk et al. (2008) gezeigten Heterodimerisierung von PI31 mit dem F-Box Protein Fbxo7, weisen die hier vorgestellten Ergebnisse auf eine Funktion von PI31 und dessen Isoformen bei der Ubiquitinierung von proteasomalen Substraten hin. / The ubiquitin–proteasome pathway is the major intracellular system for protein degradation. It plays an important role in the regulation of cellular processes like cell cycle control, signal transduction and gene transcription. The protein proteasome inhibitor 31 (PI31) was initially characterized as a potent inhibitor of proteasomal activity in vitro. Furthermore it was shown that PI31 modulates the assembly of the murine immunoproteasome (i20S). The function and regulation of PI31 in the human system is so far unexplored and therefore the topic of this study. It was shown that at least nine alternatively spliced variants of the PI31 gene PSMF1 exist additionally to the PI31 transcript. The PI31 isoforms V2 to V10 differ from PI31 (V1) in parts of the N-terminus and in a modified C-terminus. Only the isoform V5 is tissue specific expressed in testis and localized in the nucleus. After overexpression only the isoform V3 has the ability to inhibit the proteasomal activity in vivo. In contrast to the murine system neither PI31 nor the isoforms showed a modulatory effect on the assembly of the i20S. The overexpression of PI31 and V3 in human cells results instead in the accumulation and delayed degradation of proteasomal substrates. Furthermore the expression of human PI31 can be induced by virus associated stimuli like dsRNA and type I interferones. In addition, for the 3kb long 3’UTR of the PI31-mRNA an inhibitory effect on the expression and therefore a regulatory role was shown. Together with data from Kirk et al. (2008), who show the heterodimerization of PI31 with the F-box protein Fbxo7, the presented results suggest a function of PI31 and its isoforms in the process of ubiquitination of proteasomal substrates.
9

Regulation der Stabilität der proangiogenen Transkriptionsfaktoren c-Jun, Id1 und Id3 durch das COP9-Signalosom

Berse, Matthias 01 February 2006 (has links)
Für die Progression des Wachstums maligner Tumoren und ihre Metastasierung ist die Angiogenese, die Bildung neuer Blutgefäße aus bereits existierenden, eine essentielle Voraussetzung. In dieser Arbeit konnte gezeigt werden, dass die proangiogenen Transkriptionsfaktoren c-Jun, Id1 und Id3 in ihrer Stabilität gegenüber dem Ubiquitin/26S-Proteasom-System durch das COP9-Signalosom (CSN) kontrolliert werden. Dieses bildet einen multimeren Proteinkomplex, der deutliche Homologien mit dem Lid-Subkomplex des 26S-Proteasoms aufweist. Sowohl c-Jun als auch Id3 binden an die Untereinheit CSN5. Id3 interagiert zusätzlich mit CSN7. Rekombinantes c-Jun, ein bekanntes Substrat der CSN-assoziierten Kinasen CK2 und PKD, wird durch Curcumin, einen Hemmstoff dieser Kinasen, deutlich destabilisiert. Daneben induziert Curcumin hochmolekulare Formen von c-Jun, bei denen es sich höchstwahrscheinlich um Ubiquitin-Konjugate handelt. Ferner beschleunigt Curcumin, ebenso wie die CK2- und PKD-Inhibitoren Emdodin, DRB und Resveratrol, in HeLa-Zellen den proteasomalen Abbau von c-Jun. Die c-Jun-abhängige Produktion von VEGF wird durch alle vier Kinase-Hemmstoffe signifikant reduziert. Verstärkt wird dieser Effekt noch durch den proteasomalen Inhibitor MG-132. Id3 wird nicht von den CSN-assoziierten Kinasen phosphoryliert. Allerdings hemmt es in einem Kinase-Assay die Phosphorylierung von c-Jun, ICSBP und CSN2. Curcumin und Emodin regen in HeLa-Zellen die Ubiquitinierung und den proteasomalen Abbau von Id3 an. Die Proteolyse von Id1 wird in HeLa-Zellen ebenfalls in Anwesenheit dieser beiden Hemmstoffe stimuliert. Mittels Kotransfektion von Id3 und His-markiertem Ubiquitin konnte eine verstärkte Ubiquitinierung von Id3 in Gegenwart von Curcumin direkt nachgewiesen werden. Außerdem wird Id3 durch die Überexpression von CSN2 stabilisiert. Auf diesen Daten basiert die Schlussfolgerung, dass die CSN-abhängige Phosphorylierung den Abbau von c-Jun und der beiden Id-Proteine über das Ubiquitin/26S-Proteasom-System inhibiert und dadurch ein interessantes neues Ziel einer antiangiogenen Tumortherapie repräsentiert. / Angiogenesis, the formation of new blood vessels from the existing vasculature, is a prerequisite for the progression of solid tumor growth and metastasis. In this study it is shown that the COP9 signalosome (CSN) regulates the stability of the angiogenic transcription factors c-Jun, Id1 and Id3 towards the ubiquitin/26S proteasome system. The COP9 signalosome constitutes a multimeric protein complex that shares sequence homology with the 26S proteasome lid complex. Both c-Jun and Id3 physically interact with the CSN subunit CSN5. In addition, Id3 can bind to CSN7. Recombinant c-Jun, a substrate of the CSN-associated kinases CK2 und PKD, is destabilized by curcumin, an inhibitor of these two kinases. Furthermore, curcumin induces high molecular weight c-Jun species, most likely ubiquitin conjugates. All tested inhibitors of the CK2 and PKD, emodin, DRB, resveratrol, as well as curcumin accelerate the degradation of c-Jun by the 26S proteasome in HeLa cells. The c-Jun-dependent expression of VEGF, the most potent angiogenic factor, is significantly reduced by the four kinase inhibitors. MG-132, an inhibitor of the 26S proteasome, also diminishes the production of VEGF. Id3 is not phosphorylated by the CSN-associated kinases. However, it inhibits c-Jun, ICSBP and CSN2 phosphorylation. Curcumin and emodin significantly induce ubiquitination and proteasome-dependent degradation of Id3 in HeLa cells. Proteasome-dependent degradation Id1 in HeLa cells is also stimulated by treatment with curcumin or emodin. Ubiquitination of Id3 is shown directly by cotransfection of HeLa cells with Id3 and His-tagged ubiquitin. Curcumin increases Id3-ubiquitin conjugate formation. In addition, overexpression of CSN2 leads to stabilization of Id3 protein. On the basis of these data it is concluded that CSN-mediated phosphorylation inhibits ubiquitination and proteasome-dependent degradation of c-Jun, Id1 and Id3. The COP9 signalosome thus represents an interesting new target for antiangiogenic tumor therapy.
10

Investigations into the regulation of histone H2B monoubiquitination / Investigations into the regulation of histone H2B monoubiquitination

Shchebet, Andrei 18 April 2011 (has links)
No description available.

Page generated in 0.0733 seconds