• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbohydrate-Functionalized Nanomaterials : Synthesis, Characterization and Biorecognition Studies

Kong, Na January 2015 (has links)
This thesis focuses on the development of carbohydrate coupling chemistry on nanomaterials and their biological activity studies. It is divided into two parts: In part one, two carbohydrate immobilization approaches, based on perfluorophenyl azide (PFPA)-functionalized silica nanoparticles (SNPs), are presented, where the binding affinity of the glyconanoparticles was evaluated through carbohydrate-lectin interaction. In the first approach, PFPAfunctionalized SNPs were treated with propargylated glycosides and functionalized under copper-catalyzed azide-alkyne cycloaddition (CuAAC) conditions to give glyconanoparticles. For the second approach, a metal-free coupling chemistry based on perfluorophenyl azide-aldehyde-amine cycloaddition (AAAC) was developed for carbohydrate immobilization on PFPA-functionalized SNPs using glycosyl amine and phenylacetaldehyde. Subsequently, a quantitative fluorine nuclear magnetic resonance (19F qNMR) technique was developed to determine the carbohydrate density on the glyconanoparticles. The addition of an internal standard allowed the accurate determination of carbohydrate density, which was then used to calculate the apparent dissociation constant (Kd ) of the glyconanoparticles with lectin by a ligand competition assay. The developed approaches proved general and versatile, and the carbohydrate-presenting nanoplatforms showed high binding specificity in lectin binding. In part two, microwave irradiation was used to functionalize carbon nanomaterials with PFPA followed by carbohydrate conjugation. The microwave-assisted method proved efficient for a number of carbon nanomaterials including carbon nanotubes (CNTs), graphene and fullerene. The carbohydrates on the glyconanomaterials retained their binding patterns towards cognate lectins. / <p>QC 20150907</p>
2

Photochemical Surface Functionalization : Synthesis, Nanochemistry and Glycobiological Studies

Deng, Lingquan January 2011 (has links)
This thesis mainly deals with the development of photochemical approaches to immobilize carbohydrates on surfaces for glycobiological studies. These approaches have been incorporated into a number of state-of-the-art nanobio-platforms, including carbohydrate microarrays, surface plasmon resonance (SPR), quartz crystal microbalance (QCM), atomic force microscopy (AFM), and glyconanomaterials. All the surfaces have displayed good binding capabilities and selectivities after functionalization with carbohydrates, and a range of important data have been obtained concerning surface characteristics and carbohydrate-protein interactions, based on the platforms established. Besides, a variety of non-carbohydrate and carbohydrate-based molecules have been synthesized, during which process the mutarotation of 1-glycosyl thiols and the stereocontrol in 1-S-glycosylation reactions have been thoroughly studied. / QC 20111004

Page generated in 0.0869 seconds