Spelling suggestions: "subject:"glycosides hydrolase""
1 |
Complexity of the mannan degrading system from Pseudomonas cellulosaHogg, Deborah Jane January 2001 (has links)
No description available.
|
2 |
Glycoside hydrolases in bacteroides fragilisBerg, Jan-Olof. January 1983 (has links)
Thesis (doctoral)--Karolinska Institutet, Stockholm, 1983. / Extra t.p. with thesis statement inserted. Includes the author's four published papers. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
3 |
Glycoside hydrolases in bacteroides fragilisBerg, Jan-Olof. January 1983 (has links)
Thesis (doctoral)--Karolinska Institutet, Stockholm, 1983. / Extra t.p. with thesis statement inserted. Includes the author's four published papers. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
4 |
Desenvolvimento de uma biblioteca de enzimas a partir de metagenoma de solo = Library generation for biomass conversion enzymes from soil metagenome / Library generation for biomass conversion enzymes from soil metagenomeAlvarez, Thabata Maria, 1986- 23 August 2018 (has links)
Orientador: Fabio Marcio Squina / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-23T12:41:11Z (GMT). No. of bitstreams: 1
Alvarez_ThabataMaria_D.pdf: 22982311 bytes, checksum: 1bc2a260df2bfab4948ffb299f13a63f (MD5)
Previous issue date: 2013 / Resumo: Devido à necessidade do desenvolvimento de fontes de energias renováveis é de grande interesse a descoberta de novas enzimas envolvidas na desconstrução da parede celular vegetal para a produção de bicombustíveis. A metagenômica é uma poderosa ferramenta para a descoberta de novos genes em comunidades microbianas que não são passíveis de cultivo pelas técnicas tradicionais. Neste contexto, o objetivo desta tese foi o desenvolvimento de estratégias metagenômicas para prospecção de novas enzimas atuantes na degradação da biomassa vegetal no metagenoma de solo de canavial bem como a caracterização funcional das mesmas. A biblioteca metagenômica construída com DNA extraído de um consórcio microbiano especializado na degradação de bagaço de cana-de-açúcar explodido a vapor e deslignificado foi empregada nos experimentos de triagem funcional de alto desempenho. Como resultado, foram identificados três clones positivos com atividade celulolítica e dois clones com atividade xilanolítica. A análise dos insertos de cada um dos clones resultou na localização de ORFs cujas sequências de aminoácidos apresentaram identidade com domínios conservados de glicosil hidrolases da família 5 (celulases E-1 e E-2), família 6 (celulase E-3), família 10 (xilanase X-1) e família 16 (glicosil hidrolase X-2). A celulase E-1 apresentou em sua estrutura além do domínio catalítico, E-1 Cat, um domínio de ligação a carboidratos, denominado E-1 CBM, que não apresentou identidade de sequência com domínios conservados conhecidos. A análise funcional do E-1 CBM revelou tratar-se de um CBM específico para cadeias de glucano com grau de polimerização mínimo de cinco unidades de glicose. Ensaios de atividade enzimática em diferentes substratos mostraram que E-1 Cat atuou especificamente na hidrólise das ligações glicosídicas do tipo ß(1,4) entre resíduos de glicose. Os maiores valores de atividade enzimática foram obtidos em pH 7,0 e temperatura de 50ºC. Os parâmetros cinéticos calculados em CMC foram Km igual a 6,05 ± 0,37 mg/mL, Vmax de 42,51 ± 1,2 ?mol/min/mg e eficiência catalítica kcat/Km de 4,06 mL/mg/s. A enzima apresentou termoestabilidade a 40ºC por cinco horas. A atividade enzimática de E-1 Cat em celulose cristalina e bagaço de cana-de-açúcar explodido a vapor resultou na liberação de açúcares solúveis, evidenciando sua potencial aplicação em processos de conversão da biomassa vegetal. Ensaios de atividade em diferentes substratos mostraram que X-1 apresentou maior atividade enzimática em xilana não ramificada, nas condições de pH e temperatura de 6,0 e 45ºC, respectivamente. Os parâmetros cinéticos calculados utilizando como substrato xilana de madeira de faia foram Km de 2,18 ± 0,13 mg/mL, Vmax de 1.435 ± 30,4 ?mol/min/mg e kcat/Km de 496,32 mL/mg/s. Em relação à termoestabilidade, a enzima se manteve estável a 40ºC e 50ºC por seis horas. A hidrólise de substratos complexos com X-1 resultou na liberação de xilooligossacarídeos, xilobiose e xilose, que são compostos que apresentam potencial aplicação nas indústrias alimentícias e de biocombustíveis. Os resultados obtidos neste estudo validaram a abordagem metagenômica desenvolvida para a descoberta de novos genes codificantes para glicosil hidrolases. Além disso, a estratégia descrita nesta tese pode ser estendida para a descoberta de uma miríade de bioprodutos de interesse biotecnológico / Abstract: Due to the necessity of development of renewable sources of energy, it is of great interest the discovery of novel enzymes involved in plant cell wall deconstruction for biofuels production. Metagenomics is a powerful tool for the discovery of novel genes in microbial communities that are not liable to cultivation by traditional techniques. In this context, the aim of this thesis was the development of metagenomic strategies for prospection of novel enzymes involved in plant biomass degradation in sugarcane field soil metagenome and functional characterization of the identified enzymes. The metagenomic library constructed with DNA extracted from a microbial consortium specialized in degradation of steam exploded delignified sugarcane bagasse was used in the experiments of high-performance functional screening. As a result, we identified three positive clones with cellulolytic activity and two clones with xylanolytic activity. The analysis of the inserts from each clone resulted in the location of ORFs whose amino acid sequences showed identity to conserved domains of glycoside hydrolase family 5 (cellulases E-1 and E-2), family 6 (cellulase E-3), family 10 (xylanase X-1) and family 16 (glycoside hydrolase X-2). Cellulase E-1 exhibited in addition to the catalytic domain, E-1 Cat, a carbohydrate binding module, called E-1 CBM, which showed no sequence identity with known conserved domains. Functional analysis of E-1 CBM showed that it is a CBM specific for glucan chains with a degree of polymerization of at least five units of glucose. Assays with a set of different substrates revealed that E-1 Cat hydrolyzed specifically ß(1,4) glycoside bonds between glucose residues. The highest value of enzymatic activity was obtained at pH 7.0 and temperature of 50°C. The kinetic parameters Km, Vmax and catalytic efficiency kcat/Km calculated using CMC were 6.05 ± 0.37 mg/mL, 42.51 ± 1.2 ?mol/min/mg and 4.06 mL/mg/s, respectively. The enzyme showed thermal stability at 40°C for five hours. The enzymatic activity of E-1 Cat in crystalline cellulose and steam exploded sugarcane bagasse resulted in the release of soluble sugars, demonstrating its potential application in processes of biomass conversion. The xylanase X-1 showed higher enzyme activity in debranched xylan, in reactions conducted in pH 6.0 and temperature of 45°C. The kinetic parameters Km, Vmax and catalytic efficiency kcat/Km calculated using beechwood xylan were 2.18 ± 0.13 mg/mL, 1,435 ± 30.4 ?mol/min/mg and 496.32 mL/mg/s, respectively. In relation to thermal stability, the enzyme was stable at 40°C and 50°C for six hours. The hydrolysis of complex substrates resulted in the release of xylo-oligosaccharides, xylobiose and xylose, which are compounds that have potential application in food and biofuels industries. The results of this study validated the metagenomic approach developed for the discovery of novel genes coding for glycoside hydrolases. Moreover, the strategy described in this work can be extended to the discovery of a myriad of byproducts of biotechnological interest / Doutorado / Bioquimica / Doutora em Biologia Funcional e Molecular
|
5 |
Novel methods for the isolation and purification of exoglycosidasesPannifer, Susan January 1989 (has links)
A number of exoglycosidases have been prepared from bacterial and plant sources using established methods for the separation of enzymes, in conjunction with certain novel purification systems hitherto not described in the literature for these enzymes. The enzyme, beta-galactosidase from E. coli has been prepared using previously described methods of phase separation and ion-exchange chromatography. As a final step in this purification, the use of a new hydroxyl-rich chromatographic support for the isolation of high-grade enzyme suitable for use in enzyme immunoassays was investigated. Methods have also been studied for the recovery of alpha-mannosidase as a by-product of the procedure used for the extraction of urease from jack bean (Canavalia ensiformis). The inclusion of a novel step involving the use of hydrophobic-interaction chromatography on Phenyl-Sepharose led to excellent recoveries of enzyme suitable for commercial use. Studies on a second glycosidase, beta-N-acetylhexosaminidase, from the same source (jack bean) paved the way for an adaptation of existing purification methods to provide increased yields and an improved quality of enzyme. Since the research unit in which this work was performed is associated with commercial organizations responsible for the preparation and marketing of biologically active products, it is important that the methods of purification described in this thesis are compatible with the requirements for largescale purification.
|
6 |
Studies on synthetic and naturally occurring glycosidase inhibitors from mushrooms.January 1994 (has links)
Fung Pik Ha. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 116-121). / Acknowledgments --- p.i / Table of Contents --- p.ii / List of Figures --- p.v / List of Tables --- p.x / Abstract --- p.xi / Chapter Chapter I --- Introduction --- p.1 / Chapter Chapter II --- Literature Reviews / Chapter II.l --- Glycosidase --- p.3 / Chapter II.2 --- Biosynthesis of N-linked Glycoprotein --- p.4 / Chapter II.3 --- Mechanism of Enzyme Catalysed Reaction --- p.8 / Chapter II.4 --- Types of Glycosidase Inhibitors --- p.12 / Chapter II.5 --- Cyclophellitol and Aminocyclitols / Chapter II.5.1 --- General background on cyclophellitol --- p.17 / Chapter II.5.2 --- Mode of inhibition of cyclophellitol --- p.20 / Chapter II.5.3 --- General background on aminocyclitols --- p.24 / Chapter Chapter III --- Characterization of Synthetic Glycosidase Inhibitors / Chapter III.1 --- Covalent-based Inactivator (Cyclophellitol and its Analogues) / Chapter III.1.1 --- Introduction --- p.28 / Chapter III.1.2 --- Materials --- p.32 / Chapter III.1.3 --- Methods / Chapter III.1.3.1 --- Inhibitory assay of commercially available glycosidases --- p.33 / Chapter III.1.3.2 --- Partial purification of β-D-mannosidase from A. oryzae --- p.34 / Chapter III.1.3.3 --- Protein assay in purification of β-D-mannosidase --- p.38 / Chapter III.1.3.4 --- Inhibitory assay for partially purified β-D- mannosidase (A . oryzae) --- p.38 / Chapter III.1.3.5 --- Influence of dialysis on glycosidase inhibition --- p.39 / Chapter III.1.3.6 --- Inactivation experiment on glycosidases --- p.39 / Chapter III.1.4 --- Results / Chapter III.1.4.1 --- Inhibitory activities of cyclophellitol and its analogues against glycosidases --- p.41 / Chapter III.1.4.2 --- Effect of dialysis on glycosidase inhibition --- p.44 / Chapter III.1.4.3 --- The kinetic studies of glycosidase inactivation --- p.47 / Chapter III. 1.5 --- Discussion --- p.50 / Chapter III.1.6 --- Further studies --- p.55 / Chapter III.2 --- Reversible Competitive Inhibitors (Aminocyclitols) / Chapter III.2.1 --- Introduction --- p.56 / Chapter III.2.2 --- Materials --- p.58 / Chapter III.2.3 --- Methods / Chapter III.2.3.1 --- Assay of glucoside hydrolase inhibition activity --- p.60 / Chapter III.2.3.2 --- Glucose oxidase method for determination of released D-glucose --- p.60 / Chapter III.2.3.3 --- Inhibitory assay of aminocyclitols on other glycosidases --- p.61 / Chapter III.2.3.4 --- Influence of dialysis on the glycosidase inhibition --- p.62 / Chapter III.2.3.5 --- Lineweaver-Burk plot --- p.63 / Chapter III.2.4 --- Results / Chapter III.2.4.1 --- Inhibitory activities of valiolamine and related aminocyclitols against six glycosidases --- p.64 / Chapter III.2.4.2 --- Characterization the aminocyclitols as reversible competitive inhibitors --- p.69 / Chapter III.2.5 --- Discussion --- p.80 / Chapter Chapter IV --- Isolation of the Naturally Occurring Glycosidase Inhibitor from Mushrooms / Chapter IV.1 --- Introduction --- p.83 / Chapter IV.2 --- Materials --- p.84 / Chapter IV.3 --- Methods / Chapter IV.3.1 --- Preparation of Ganoderma lucidum --- p.86 / Chapter IV.3.2 --- Preparation of V. volvacea --- p.86 / Chapter IV.3.3 --- Inhibitory assay of aqueous extract of mushrooms on glycosidases --- p.87 / Chapter IV.3.4 --- Anthrone method for determination of reducing sugars --- p.87 / Chapter IV.3.5 --- Flash liquid chromatography for purification of putative inhibitors in G. lucidum --- p.88 / Chapter IV.4 --- Results / Chapter IV.4.1 --- Prescreening of Inhibitory effects of Various Fungal Extracts --- p.90 / Chapter IV.4.2 --- Inhibitory Effects of Partially Purified G. lucidum Extract on Glycosidase --- p.92 / Chapter IV.4.3 --- Effect of Endogenous Substrates on Glycosidase Activities --- p.93 / Chapter IV.4.4 --- Results of Liquid Column Chromatography --- p.93 / Chapter IV.4.5 --- Structure Determination and Characterization of purified compounds --- p.95 / Chapter IV.4.6 --- Inhibitory Activities of Compounds A and B against Brewers yeast a- glucosidase --- p.96 / Chapter IV.5 --- Discussion --- p.98 / Chapter Chapter V --- Conclusions --- p.113 / References --- p.116
|
7 |
Characterization of BT3299: A Family GH31 Enzyme from a Prominent Gut Symbiont Bacteroides ThetaiotaomicronJacobs, Jenny-Lyn 30 May 2011 (has links)
The human gut is host to a vast consortium of microorganisms, collectively referred to as the microbiota or microflora, which play important roles in health and disease. Current applications focus only on a single type of bacteria, which are not the most dominant numerically, and without detailed knowledge of the specific functions of these bacteria. A good indicator of the function of a bacterial species involves detailed analysis of its enzymes. Bacteroides thetaiotaomicron is one of the predominant bacterial species with a great representation of the carbohydrate processing enzymes, glycoside hydrolases in its proteome. This thesis reports the production and purification of one such enzyme, BT3299, suitable for kinetic and structural studies. The enzyme displayed a broad substrate specificity with a slight preference for 1-->3 and 1-->6 glycosidic linkages and longer chain saccharides. Future work will focus on structural analysis as an aid to the understanding of the enzyme function.
|
8 |
Characterization of BT3299: A Family GH31 Enzyme from a Prominent Gut Symbiont Bacteroides ThetaiotaomicronJacobs, Jenny-Lyn 30 May 2011 (has links)
The human gut is host to a vast consortium of microorganisms, collectively referred to as the microbiota or microflora, which play important roles in health and disease. Current applications focus only on a single type of bacteria, which are not the most dominant numerically, and without detailed knowledge of the specific functions of these bacteria. A good indicator of the function of a bacterial species involves detailed analysis of its enzymes. Bacteroides thetaiotaomicron is one of the predominant bacterial species with a great representation of the carbohydrate processing enzymes, glycoside hydrolases in its proteome. This thesis reports the production and purification of one such enzyme, BT3299, suitable for kinetic and structural studies. The enzyme displayed a broad substrate specificity with a slight preference for 1-->3 and 1-->6 glycosidic linkages and longer chain saccharides. Future work will focus on structural analysis as an aid to the understanding of the enzyme function.
|
9 |
Exploration du microbiote d'invertébrés par métagénomique fonctionnelle et caractérisation structure-fonction d'une nouvelle xylanase / Exploration of the microbiota of invertebrates by functional metagenomics and structure-function characterization of a new xylanaseGuyez, Barbara 06 December 2016 (has links)
La paroi végétale est une structure complexe composée principalement de polysaccharides (cellulose, hémicellulose et pectine), de lignine et de protéines. Elle est impliquée dans de nombreuses fonctions essentielles à la vie de la cellule végétale. De plus, les constituants de cette paroi, que sont les polysaccharides et la lignine, représentent la plus grande source de carbone renouvelable de la planète. Ceci en fait des cibles de choix notamment pour la production d'énergies « vertes ». Toutefois, l'utilisation des polysaccharides tels que les hémicelluloses constituant la paroi végétale reste, à l'heure actuelle, limitée du fait de la difficulté à les dégrader. Ces dernières années, un effort important a été mis en œuvre pour identifier et caractériser de nouvelles enzymes, telles que les glycosides hydrolases, permettant de dégrader efficacement la biomasse végétale. Dans le but de découvrir de nouvelles enzymes impliquées dans la dégradation de la biomasse végétale, des chercheurs de l'équipe « Catalyse et Ingénierie Moléculaire Enzymatiques » du LISBP ont décidé d'explorer le métagénome d'organismes connus pour dégrader la biomasse végétale. Deux espèces animales ont fait l'objet d'analyses : tout d'abord les termites qui sont considérés comme les champions de la dégradation de la biomasse végétales et souvent comparés à des bioréacteurs, et le ver de terre. Des banques métagénomiques de trois espèces différentes de termites ainsi qu'une banque métagénomique de ver de terre ont ainsi été créées. Dans ces travaux de thèse deux des banques métagénomiques de termites, celle de Nasutitermes corniger et celle de Termes hispaniolae, ont fait l'objet d'une étude afin de comparer le potentiel hémicellulolytique de ces deux espèces. Après sélection de nombreux clones positifs sur substrats chromogéniques de chacune des deux banques, séquençage puis annotation taxonomique et fonctionnelle, un grand nombre d'enzymes et principalement des glycosides hydrolases, a pu être identifié. Les résultats montrent que le métagénome de Nasutitermes corniger présente majoritairement des enzymes à activité endoglycosidase alors que le métagenome de Termes hispaniolae possède plutôt des enzymes à activité exoglycosidase. Toutes les activités trouvées dans chacune des espèces de termite sont en bonne corrélation avec l'alimentation du termite. De plus, nous avons observé que le microbiote intestinal des deux termites ne possèdent pas les mêmes embranchements bactériens majoritaires et nous avons pu voir que le microbiote de Termes hispaniolae est plus diversifié ce qui corrèle aussi avec l'alimentation des deux termites. D'autre part, dans la banque métagénomique du ver de terre, l'annotation fonctionnelle a révélé une enzyme intéressante. Il s'agit d'une enzyme annotée par B. Henrissat (responsable de la base de données CAZy) comme étant une glycoside hydrolase putative mais n'appartenant à aucune des 135 familles de glycosides hydrolases existantes. Cette enzyme putative, appelée GH* présente des similitudes avec les GH de la famille 5 sans pour autant appartenir à cette famille du fait notamment de l'absence du résidu catalytique nucléophile conservé. Une étude structurale et fonctionnelle de GH* a donc été menée. Les expériences ont permis de prouver que GH* est une endo-xylanase ayant une préférence pour les arabinoxylanes et les xylooligosaccharides de degré de polymérisation d'au moins 5 ou 6. La structure tridimensionnelle de GH* à 1,6Å de résolution a été obtenue par cristallographie des rayons X par remplacement moléculaire à l'aide d'une GH5. Cette structure a permis de confirmer l'identité du résidu acide/base identifié par alignement de séquences et d'émettre une hypothèse sur l'identité du résidu nucléophile. Enfin des mutants de GH* pour ces deux résidus ont été obtenus et ont confirmé leur implication dans l'activité de l'enzyme. / Plant cell wall is a complex structure surrounding plant cells mainly composed by polysaccharides (cellulose, hemicellulose and pectin), lignin and proteins. The plant wall maintains and imposes the size and shape of cells. It is also important for exchanges between cells and extra cellular medium. The polysaccharides of this cell wall are the largest renewable carbon source on the earth, which makes them good targets to produce green energies. Because plant cell wall is difficult to degrade, its use for biofuels for is still limited. However, some organisms are able to efficiently degrade this biomass. Exploring the diversity of the living word to discover new effective biocatalysts has grown considerably last years, because of the emergence of metagenomics. In this context and to discover new enzymes involved in the degradation of plant biomass, the team « Catalyse et Ingénierie Moléculaire Enzymatiques » of LISBP decided to explore metagenome of organisms known to degrade plant biomass. Two animal families were chosen for metagenomics analysis, the termite and earthworm. Metagenomics banks of three different species of termite and one metagenomics bank of an earthworm were created. In this thesis project, two of the three metagenomics banks of termites, the one from Nasutitermes corniger and the other one from Termes hispaniolae, were studied to compare the hemicellulolytic potential of these two species. After selection of many positive clones on chromogenic substrates of both banks, sequencing, taxonomic and functional annotations, a large number of enzymes and mainly glycoside hydrolases, could be identified. The results obtained shown that the trends observed during functional screens were maintained. Indeed, it appears that Nasutitermes corniger has a majority of endoglycosidases while Termes hispaniolae has mainly exoglycosidases. Thereby, families of enzymes highlighted allowed correlating their hydrolytic activities with the diet of these species. Furthermore, we observed that the intestinal microbiota of each termite is different. Indeed, both termites do not have the same majority bacterial phyla and the microbiota of Termes hispaniolae is more diverse than the one of Nasutitermes corniger. On the other hand, functional annotation of the metagenomics bank of the earthworm revealed an enzyme annotated as a glycoside hydrolase no belonging to any of the 135 glycoside hydrolase existing families. This enzyme, named GH*, seems to be close to GH5 but does not shown the nucleophilic catalyst residue perfectly conserved in this glycoside hydrolase family. A functional and structural study of GH* was then done. We have shown that GH* is an endo-xylanase which prefers arabinoxylans and xylooligosaccharides having a polymerization degree greater than 5. In addition, we determined the crystal structure of GH* at 1.6Å resolution. This 3D structure has confirmed the presence of the acid/base residue identified by sequence alignment and allowed us to hypothesize about the identity of the nucleophilic residue. Finally, mutants of GH* for these two residues were obtained and confirmed their involvement in the activity of the enzyme. We were able to progress in the understanding of structure/function relationships of this protein.
|
10 |
Études structurales et fonctionnelles d'alpha-glucosidases bactériennes / Functional and structural studies of bacterial alpha-glucosidasesDejob, Magali 15 July 2013 (has links)
Il est reconnu, depuis des années, que la flore intestinale par son équilibre complexe et dynamique joue un rôle essentiel dans la santé humaine. Une des stratégies les plus prometteuses pour la maintenir ou l’améliorer consiste à moduler le microbiome par l’utilisation de bactéries probiotiques ou de sucres prébiotiques. C’est dans ce contexte que s’inscrivent les études structurales et fonctionnelles d’α glucosidases bactériennes développées dans cette thèse. Ces enzymes hydrolysant les liaisons α-(1,4) glucosidiques sont classées, selon la base de données CAZy, dans les familles de glycoside hydrolases (GH) 4, 13, 31, 63, 97 et 122. Ces travaux de thèse, centrés sur trois α-glucosidases issues de Lactobacillus bulgaricus (11842aglu, GH31), Lactococcus lactis (1403aglu, GH13) et Shewanella sp. ANA-3 (SHWaglu, GH97), exposent la mise au point de leurs protocoles de surexpression et de purification. Ils présentent également des études bioinformatiques de 11842aglu et de 1403aglu, ainsi qu’une caractérisation enzymatique préliminaire de cette dernière. Une analyse structurale et fonctionnelle approfondie de SHWaglu a aussi été réalisée. La résolution, par cristallographie aux rayons X, des structures de SHWaglu seule, en complexe avec différents ligands et de mutants, a participé à enrichir les connaissances, jusqu’à présent peu étendues, sur les enzymes de la famille GH97. Ainsi, un motif structural conservé au sein de cette famille a notamment été mis en évidence. Par ailleurs, ces informations structurales combinées aux études enzymatiques ont permis de révéler des déterminants moléculaires de l’activité de cette α-glucosidase et, par conséquent, d’établir les relations structure-fonction-activité de cette enzyme. Ainsi, l’ensemble des données obtenues, couplé à des études d’ingénierie protéique, contribue à ouvrir de nouvelles perspectives industrielles, notamment en suggérant d’optimiser ou de conférer des activités enzymatiques modifiées dans certaines cibles de choix afin de leur faire synthétiser des sucres de type prébiotiques / It is now generally accepted that the gut flora with its complex and dynamic nature plays a vital role in human health. One of the most promising strategies for maintaining or improving health is to modulate the microbiome by the use of probiotics and prebiotics as food supplements. The structure/function/activity relationship studies of bacterial α-glucosidases described in this thesis have been performed within this context. These α-(1,4)-glucosidic bond hydrolyzing enzymes are classified, according to the CAZy database, into glycoside hydrolases families (GH) 4, 13, 31, 63, 97 and 122. This thesis work, has focused on three α-glucosidases from Lactobacillus bulgaricus (11842aglu, GH31), Lactococcus lactis (1403aglu, GH13) and Shewanella sp. ANA-3 (SHWaglu, GH97), and the development of their overexpression and purification protocols. It also presents a bioinformatics studies of 11842aglu and 1403aglu, as well as preliminary enzymatic characterization of the latter. As for SHWaglu, detailed structural and functional studies have been carried out. The crystal structures of SHWaglu in its native state, in complex with different ligands as well as site directed mutants have contributed to increase our knowledge on enzymes from the GH97 family which to date remains relatively limited. Notably, a conserved structural motif in this family has been identified. Overall, the structural- and enzymatic studies and analyses have revealed molecular-and structural determinants governing the activity and broad substrate specificity of this α-glucosidase which is adapted to cold temperatures. Apart from the insight gained from a fundamental research point of view, data described within this work, coupled with protein engineering studies may contribute to open up new industrial perspectives, in particular by suggesting optimized or altered enzyme activities in some attractive enzyme targets with the aim of synthesizing prebiotic compounds
|
Page generated in 0.0933 seconds