• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1533
  • 298
  • 199
  • 166
  • 108
  • 66
  • 38
  • 32
  • 22
  • 21
  • 20
  • 17
  • 17
  • 17
  • 17
  • Tagged with
  • 3089
  • 665
  • 333
  • 307
  • 270
  • 266
  • 220
  • 177
  • 174
  • 164
  • 155
  • 143
  • 141
  • 139
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Gold and silver nanoparticles: synthesis, characterization and functional properties

Kemal, Lydia, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
This thesis focuses on the shape-controlled metal nanoparticles for functional applications, covering the synthesis, characterization and optical properties. Three parts are mainly involved in this work, including, gold worm-like nanoparticles, silver nanoplates, and silver induced selenium nanowires. The first part focuses on a facile synthesis method for shape control of gold nanoparticles by treating an aqueous solution of chloroauric acid with sodium citrate and poly(vinyl pyrrolidone) (PVP), in which those worm-like nanoparticles were investigated by various advanced experimental characterizations combining density function theory (DFT) calculation. These nanoparticles can be used for optical sensing detection of ions in aqueous system. The second part involves the synthesis, growth, and optical properties of silver nanoplates (triangles and circular discs). Such nanoplates could be synthesized by a self-seeding co-reduction method at ambient conditions. In particular, molecular dynamics simulation is used to quantify the interaction energies between surfactant molecules and different facets of silver crystal. Such molecular information, together with measurements using x-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and ultraviolet??visible (UV??vis) spectroscopy, has proven to be useful for understanding the growth mechanisms of silver nanoplates. The third part focuses on the template of silver nanoparticles for generating trigonal selenium (t-Se) nanowires. This technique exhibits some advantages in fabricating t-Se nanostructures, including no need to use stabilizers and sonichemical process and all operations being proceeded in aqueous media and at room temperature. Particularly it can successfully achieve the transformation from amorphous α-Se to crystalline t-Se in aqueous solution and this method would be useful for generating one-dimensional nanostructures with similar lattice parameter(s). It is considered that the technique for the shape-controlled metal nanoparticles can at least partially, be extended to other nanomaterials for functional applications.
522

Study of Self-assembled Gold Nanocluster Patterns in Ion Implanted Silicon: Order from Disorder

Venkatachalam, Dinesh Kumar, Dinesh.Venkatachalam@anu.edu.au January 2008 (has links)
Gold (Au) implantation in silicon (Si) has been a topic of great interest from both fundamental and applied perspectives. Ion implantation is a versatile technique due to its ability to form surface-embedded nanoparticles that provide better adhesion. Also, being an integral part of the substrate lattice, the nanoclusters produced by ion implantation are free from impurities and their size distribution can be controlled by carefully optimizing the beam parameters. During our experiments to produce nanoclusters of Au on Si for use as seeds for the growth of nanowires, we stumbled across an unusual pattern formation process under specific conditions. This unique self-assembly process is observed only within a critical threshold implantation fluence and above a threshold annealing temperature. Fabrication of ordered arrays of metal nanoparticles on Si substrates is of significance for both fundamental science associated with low-dimensional physics and technical app lications. The application of functional nanostructures strongly depends on their assembly in ordered one- or two- dimensional arrangements. These arrangements may play an important role in fabricating ordered arrays of semiconductor/oxide nanowires.This thesis discusses a systematic study performed to understand the temperature and time dependent nucleation, growth of Au nanoclusters and evolution of the self-assembled patterns. A growth model is proposed to show the re-crystallization behaviour of Au supersaturated amorphous silicon (a-Si) on Si substrate. The observed self-assembled periodic patterns of Au nanoclusters bear resemblance to the Liesegang ring structures prevalent in some chemical reaction-diffusion systems. Based on this systematic study of the growth and morphology of Au nanoclusters, a tentative growth mechanism has been proposed for the formation mechanism of this unusual self-assembled pattern. The pattern formation of this non-equilibrium process is expected to originate due to instabilities of the three scales of Au nanoclusters at elevated temperatures. The kinetics of pattern formation from a supersaturated solid solution (a-Si/Au alloy) is demonstrated using numerical solutions obtained by a two-dimensional growth model, which takes into account the nucleation, diffusion and the aggregation process. The numerical solution of the diffusion equations appear to be in good agreement with the experimental results.
523

Thermal and chemical profiling of the Bald Mountain District, White Pine County, Nevada /

Schmauder, Gretchen C. January 2005 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2005. / "August, 2005." Includes bibliographical references. Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2005]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
524

Study of superspin-glass effect and superparamagnetic behavior in magnetite nanoparticles and gold-coated magnetite nanoparticles

Fullem, Sharbani I. January 2006 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Physics, 2006. / Includes bibliographical references.
525

Single Stranded DNA Induced Assembly of Gold Nanoparticles

Yang, Jun, Lee, Jim Yang, Deivaraj, T.C., Too, Heng-Phon 01 1900 (has links)
The binding affinity of single stranded DNA (ssDNA) for gold nanoparticle surface is studied in this work. The data indicate that the strength of interaction between ssDNA and Au particle surface is closely related to the particle size, with smaller particles (5 nm) producing the most pronounced effects. From these experimental findings, a single stranded DNA (ssDNA) based method to assimilate 13 and 5 nm gold nanoparticles was developed, and verified by transmission electron microscopy (TEM). / Singapore-MIT Alliance (SMA)
526

Untersuchungen zum Kirkendall-Effekt im gesamten Konzentrationsbereich von binaeren Diffusionssystemen

friedhelm.frerichs@ewetel.net 07 November 2001 (has links)
No description available.
527

Laser-assisted scanning probe alloying nanolithography (LASPAN) and its application in gold-silicon system

Peng, Luohan 15 May 2009 (has links)
Nanoscale science and technology demand novel approaches and new knowledge to further advance. Nanoscale fabrication has been widely employed in both modern science and engineering. Micro/nano lithography is the most common technique to deposit nanostructures. Fundamental research is also being conducted to investigate structural, physical and chemical properties of the nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. Doing so, experimental approaches combined with energy analysis were carried out. A delicate hardware system was designed and constructed to realize the nanometer scale lithography. We developed a complete process, namely laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures in gold-silicon (Au-Si) system. As a result, four aspects of nanostructures were made through different experimental trials. A non-equilibrium phase (AuSi3) was discovered, along with a non-equilibrium phase diagram. Energy dissipation and mechanism of nanocrystalization in the process have been extensively discussed. The mechanical energy input and laser radiation induced thermal energy input were estimated. An energy model was derived to represent the whole process of LASPAN.
528

Adsorption mechanism and dynamical behavior of water molecules surrounding icosahedral Au nanoclusters

Chang, Chia-wei 09 September 2007 (has links)
Molecular dynamic simulation is utilized to investigate the adsorption mechanism of water molecules surrounding Au nanoparticle of different sizes. We selected 13, 55, 147 atoms icosahedral gold nanopartilce in our model and their diameter are 7.92Å, 13.2Å, 18.5Å, respectively. We calculated density profile of water molecules and found that there were two adsorption layers out of the surface of gold nanoparticles. We also calculated average number of hydrogen bonds per water . It is higer in the adsorption layer than in bulk water region and we found that the direction of hydrogen bonds are numerously parallel with gold surface in the adsorption layer. We also claculated orientational order parameter for water molecules and explore the difference of the tetrahedral structure of the water molecules between the adsorption layer and bulk water region. Besides, we compared of cases of different gold sizes.
529

Towards the rational design of nanoparticle catalysts

Dash, Priyabrat 29 June 2010
This research is focused on development of routes towards the rational design of nanoparticle catalysts. Primarily, it is focused on two main projects; (1) the use of imidazolium-based ionic liquids (ILs) as greener media for the design of quasi-homogeneous nanoparticle catalysts and (2) the rational design of heterogeneous-supported nanoparticle catalysts from structured nanoparticle precursors. Each project has different studies associated with the main objective of the design of nanoparticle catalysts.<p> In the first project, imidazolium-based ionic liquids have been used for the synthesis of nanoparticle catalysts. In particular, studies on recyclability, reuse, mode-of-stability, and long-term stability of these ionic-liquid supported nanoparticle catalysts have been done; all of which are important factors in determining the overall greenness of such synthetic routes. Three papers have been published/submitted for this project. In the first publication, highly stable polymer-stabilized Au, Pd and bimetallic Au-Pd nanoparticle catalysts have been synthesized in imidazolium-based 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid (Journal of Molecular Catalysis A: Chemical, 2008, 286, 114). The resulting nanoparticles were found to be effective and selective quasi-homogeneous catalysts towards a wide-range of hydrogenation reactions and the catalyst solution was reused for further catalytic reactions with minimal loss in activity. The synthesis of very pure and clean ILs has allowed a platform to study the effects of impurities in the imidazolium ILs on nanoparticle stability. In a later study, a new mode of stabilization was postulated where the presence of low amounts of 1-methylimidazole has substantial effects on the resulting stability of Au and Pd-Au nanoparticles in these ILs (Chemical Communications, 2009, 812). In further continuation of this study, a comparative study involving four stabilization protocols for nanoparticle stabilization in BMIMPF6 IL is described, and have shown that nanoparticle stability and catalytic activity of nanoparticles is dependent on the overall stability of the nanoparticles towards aggregation (manuscript submitted).<p> The second major project is focused on synthesizing structurally well-defined supported catalysts by incorporating the nanoparticle precursors (both alloy and core shell) into oxide frameworks (TiO2 and Al2O3), and examining their structure-property relationships and catalytic activity. a full article has been published on this project (Journal of Physical Chemistry C, 2009, 113, 12719) in which a route to rationally design supported catalysts from structured nanoparticle precursors with precise control over size, composition, and internal structure of the nanoparticles has been shown. In a continuation of this methodology for the synthesis of heterogeneous catalysts, efforts were carried out to apply the same methodology in imidazolium-based ILs as a one-pot media for the synthesis of supported-nanoparticle heterogeneous catalysts via the trapping of pre-synthesized nanoparticles into porous inorganic oxide materials. Nanoparticle catalysts in highly porous titania supports were synthesized using this methodology (manuscript to be submitted).
530

Synthesis and Characterization of Metal Nanoclusters Stabilized by Dithiolates

Robinson, Donald A, III 19 July 2011 (has links)
Rapidly expanding research in nanotechnology has led to exciting progress in a versatile array of applications from medical diagnostics to photocatalytic fuel cells. Such success is due to the ability of researchers to manipulate the desired properties of nanomaterials by controlling their size, shape, and composition. Among the most thriving areas of nanoparticle research has been the synthesis and characterization of stable metallic nanoclusters capped by thiolate ligands. Our group has extended this research to study copper, silver, and gold clusters with remarkable stability and energetics, which was achieved by using dithiolates as the ligand stabilizers. In addition to the enhanced stability offered by the chelate effect, the use of dithiolate ligands instead of monothiolates is proposed to provide an alternate interfacial bond structure that is shown to strongly influence energetic properties of nanoclusters, with strong evidence of metal-ligand charge transfer. Energetic properties were characterized by spectroscopic and electrochemical methods.

Page generated in 0.0513 seconds