• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1533
  • 298
  • 199
  • 166
  • 108
  • 66
  • 38
  • 32
  • 22
  • 21
  • 20
  • 17
  • 17
  • 17
  • 17
  • Tagged with
  • 3089
  • 665
  • 333
  • 307
  • 270
  • 266
  • 220
  • 177
  • 174
  • 164
  • 155
  • 143
  • 141
  • 139
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Quasi-homogeneous gold and bimetallic nanoparticle catalysts

Hou, Wenbo 13 August 2008
The research in this thesis involves the synthesis and characterization of nanoparticle catalysts for oxidation reactions. It includes two projects: 1) polymer-stabilized Au, Pd and bimetallic AuPd nanoparticle catalysts for alcohol oxidation reactions, and 2) oxidative stabilities and catalytic activities of thiolate- and dithiolate-protected Au monolayer-protected clusters (MPCs).<p>n the first project, alcohol oxidations under mild conditions using polyvinylpyrrolidone (PVP)-stabilized Au, Pd and bimetallic AuPd nanoparticle catalysts in aqueous solutions have been investigated. The catalytic activities of the nanoparticles towards the oxidation of benzyl alcohol, 1-butanol, 2-butanol, 2-buten-1-ol and 1,4-butanediol indicate that bimetallic 1:3 Au:Pd nanoparticles have higher catalytic activities than Au, Pd and other bimetallic AuPd nanoparticles, and that selectivities towards specific products can often be tuned using bimetallic particles. In addition, advantages and disadvantages for the use of such nanoparticle catalysts as mild, environmentally-friendly oxidation catalysts have been examined. This work has recently been published in the Journal of Catalysis.<p>In the second project, 1-dodecanethiolate-, dithiolate-, and 1:1 mixed 1-dodecanethiolate/dithiolate-protected Au MPCs have been synthesized and their thermal stability, oxidative stability in the presence of oxygen and cyanide anions have been studied. These systematic investigations reveal the stability of Au MPCs can be tuned by choosing different thiolate ligands and oxidation conditions. Partially-oxidized thiolate-protected Au MPCs which have substrate-accessible surfaces and are stabilized by residual thiolate ligands show indications they will be promising catalysts. The catalytic activities of 1-dodecanethiolate-, dithiolate-, and 1:1 mixed 1-dodecanethiolate/dithiolate-protected Au MPCs for catalytic 4-nitrophenol reduction with sodium borohydride were investigated, and all the Au MPCs showed high catalytic activity for this reaction.
532

The A.J. Goddard: Reconstruction and Material Culture of a Klondike Gold Rush Sternwheeler

Thomas, Lindsey Hall 2011 August 1900 (has links)
The A.J. Goddard, a steamboat built for the Klondike Gold Rush of 1897-1898, wrecked in 1901 on Lake Laberge, Yukon Territory, where it lay undisturbed until its rediscovery in 2008 by the Yukon River Survey Project, directed by John Pollack. The complete and undisturbed nature of the wreck site, which is the only known site from this period to show such remarkable preservation, provides an unparalleled opportunity for studying the construction features of one of the Klondike steamboats and its associated material culture. The wreck of the A.J. Goddard is the only known surviving example of a small, prefabricated sternwheeler from the Yukon River's sternwheeler days. Due to the nature of its construction and building material, the A.J. Goddard represents a period of vast change in shipbuilding techniques, and is part of the fascinating juxtaposition between traditional wooden boats and a new, prefabricated industrial solution to boatbuilding. Work thus far has revealed that the A.J. Goddard possessed a simple design and construction, likely not one developed specifically for the Yukon River. It appears that the need to carry it over a mountain influenced its design more than the qualities of the Yukon River. Modifications were made over the course of its short career to make it more suitable, but its tragic end indicates that it was not a good choice for open-water navigation, though it admirably and successfully fulfilled its mission of serving throughout the gold rush. Though it was not ideally suited for the river and lakes environment where it was built, the quickness and ingenuity with which the vessel was constructed made it one of the few vessels, out of the thousands that set out for the Yukon in the summer of 1898, to actually make it to Dawson in time for the gold rush without being delayed by ice in the north, as so many were. Field seasons were conducted in 2009 and 2010 that focused on recording the boat's construction features and artifacts. Select artifacts were recovered for study and display in Whitehorse, Yukon Territory with the intention of creating an exhibit for the Yukon public.
533

Volcanostratigraphic framework and magmatic evolution of the Oyu Tolgoi porphyry Cu-Au district, South Mongolia

Wainwright, Alan John 05 1900 (has links)
The super-giant Oyu Tolgoi porphyry copper-gold deposits in the South Gobi desert, Mongolia, consist of multiple discrete porphyry centers aligned within a north-northeast trending, >6.5 km long, arc-transverse mineralized corridor. The porphyries are linked to a tectono-magmatic event at ~372 Ma within a Devonian to Carboniferous volcanic arc, and U-Pb (zircon) geochronology records magmatic activity from ~390 Ma to ~320 Ma. The Oyu Tolgoi district underwent at least three discrete periods of syn- to post-mineral shortening and there is evidence for at least three unconformities within the Paleozoic sequence. Although the deposits were formed in an active orogenic environment characterized by rapid uplift, their preservation is a reflection of climactic effects as well insulation from erosion by rapid burial under mass-wasted and pyroclastic material in the volcaniclastic apron of late-mineral dacitic volcanoes. The porphyry copper-gold deposits are spatially and temporally related to medium- to high-K calc-alkaline quartz monzodiorite (~372 Ma) and granodiorite (~366 Ma) intrusive phases that comprise the Late Devonian Oyu Tolgoi Igneous Complex (OTIC). Adakite-like wholerock compositions as well as zircon grains with high CeN/CeN*, EuN/EuN* and Yb/Gd in the sample populations from syn- and late-mineral porphyry intrusions are different from younger intrusions that are not related to porphyry Cu-Au deposit formation. Moreover, mixed zircon populations within OTIC intrusions indicate that efficient assimilation of material from different host rocks by a convecting magma chamber occurred. Mafic to intermediate volcanic units evolved from tholeiitic to calc-alkaline compositions, which is interpreted to be a reflection of marine arc maturation and thickening. Felsic rock suites are dominantly high-K calc-alkaline, regardless of age. Nd-isotopic geochemistry from all suites is consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc and lead isotopic compositions indicate that the sulfides in the porphyry Cu-Au deposits are genetically linked to the Late Devonian magmas. Magma mixing, adakite-like magmatism and rapid uplift and erosion in a juvenile marine arc setting differentiate the ore-stage geologic environment at Oyu Tolgoi from other settings in active and fossil volcanic arcs.
534

Modelling and Forecasting Volatility of Gold Price with Other Precious Metals Prices by Univariate GARCH Models

Du, Yuchen January 2012 (has links)
This paper aims to model and forecast the volatility of gold price with the help of other precious metals. The data applied for application part in the article involves three financial time series which are gold, silver and platinum daily spot prices. The volatility is modeled by univariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models including GARCH and EGARCH with different distributions such as normal distribution and student-t distribution. At the same time, comparisons of estimation and forecasting the volatility between GARCH family models have been done.
535

Quasi-homogeneous gold and bimetallic nanoparticle catalysts

Hou, Wenbo 13 August 2008 (has links)
The research in this thesis involves the synthesis and characterization of nanoparticle catalysts for oxidation reactions. It includes two projects: 1) polymer-stabilized Au, Pd and bimetallic AuPd nanoparticle catalysts for alcohol oxidation reactions, and 2) oxidative stabilities and catalytic activities of thiolate- and dithiolate-protected Au monolayer-protected clusters (MPCs).<p>n the first project, alcohol oxidations under mild conditions using polyvinylpyrrolidone (PVP)-stabilized Au, Pd and bimetallic AuPd nanoparticle catalysts in aqueous solutions have been investigated. The catalytic activities of the nanoparticles towards the oxidation of benzyl alcohol, 1-butanol, 2-butanol, 2-buten-1-ol and 1,4-butanediol indicate that bimetallic 1:3 Au:Pd nanoparticles have higher catalytic activities than Au, Pd and other bimetallic AuPd nanoparticles, and that selectivities towards specific products can often be tuned using bimetallic particles. In addition, advantages and disadvantages for the use of such nanoparticle catalysts as mild, environmentally-friendly oxidation catalysts have been examined. This work has recently been published in the Journal of Catalysis.<p>In the second project, 1-dodecanethiolate-, dithiolate-, and 1:1 mixed 1-dodecanethiolate/dithiolate-protected Au MPCs have been synthesized and their thermal stability, oxidative stability in the presence of oxygen and cyanide anions have been studied. These systematic investigations reveal the stability of Au MPCs can be tuned by choosing different thiolate ligands and oxidation conditions. Partially-oxidized thiolate-protected Au MPCs which have substrate-accessible surfaces and are stabilized by residual thiolate ligands show indications they will be promising catalysts. The catalytic activities of 1-dodecanethiolate-, dithiolate-, and 1:1 mixed 1-dodecanethiolate/dithiolate-protected Au MPCs for catalytic 4-nitrophenol reduction with sodium borohydride were investigated, and all the Au MPCs showed high catalytic activity for this reaction.
536

Towards the rational design of nanoparticle catalysts

Dash, Priyabrat 29 June 2010 (has links)
This research is focused on development of routes towards the rational design of nanoparticle catalysts. Primarily, it is focused on two main projects; (1) the use of imidazolium-based ionic liquids (ILs) as greener media for the design of quasi-homogeneous nanoparticle catalysts and (2) the rational design of heterogeneous-supported nanoparticle catalysts from structured nanoparticle precursors. Each project has different studies associated with the main objective of the design of nanoparticle catalysts.<p> In the first project, imidazolium-based ionic liquids have been used for the synthesis of nanoparticle catalysts. In particular, studies on recyclability, reuse, mode-of-stability, and long-term stability of these ionic-liquid supported nanoparticle catalysts have been done; all of which are important factors in determining the overall greenness of such synthetic routes. Three papers have been published/submitted for this project. In the first publication, highly stable polymer-stabilized Au, Pd and bimetallic Au-Pd nanoparticle catalysts have been synthesized in imidazolium-based 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid (Journal of Molecular Catalysis A: Chemical, 2008, 286, 114). The resulting nanoparticles were found to be effective and selective quasi-homogeneous catalysts towards a wide-range of hydrogenation reactions and the catalyst solution was reused for further catalytic reactions with minimal loss in activity. The synthesis of very pure and clean ILs has allowed a platform to study the effects of impurities in the imidazolium ILs on nanoparticle stability. In a later study, a new mode of stabilization was postulated where the presence of low amounts of 1-methylimidazole has substantial effects on the resulting stability of Au and Pd-Au nanoparticles in these ILs (Chemical Communications, 2009, 812). In further continuation of this study, a comparative study involving four stabilization protocols for nanoparticle stabilization in BMIMPF6 IL is described, and have shown that nanoparticle stability and catalytic activity of nanoparticles is dependent on the overall stability of the nanoparticles towards aggregation (manuscript submitted).<p> The second major project is focused on synthesizing structurally well-defined supported catalysts by incorporating the nanoparticle precursors (both alloy and core shell) into oxide frameworks (TiO2 and Al2O3), and examining their structure-property relationships and catalytic activity. a full article has been published on this project (Journal of Physical Chemistry C, 2009, 113, 12719) in which a route to rationally design supported catalysts from structured nanoparticle precursors with precise control over size, composition, and internal structure of the nanoparticles has been shown. In a continuation of this methodology for the synthesis of heterogeneous catalysts, efforts were carried out to apply the same methodology in imidazolium-based ILs as a one-pot media for the synthesis of supported-nanoparticle heterogeneous catalysts via the trapping of pre-synthesized nanoparticles into porous inorganic oxide materials. Nanoparticle catalysts in highly porous titania supports were synthesized using this methodology (manuscript to be submitted).
537

Functionalized gold nanoparticles as probe for reactive oxygen species and heavy metal ions determination

Lin, Cheng-Yan 21 June 2010 (has links)
none
538

Developments of adequate additives for protein separations in capillary electrophoresis and applications of functional nanomaterials for biological and environmental detections in optical nanosensors

Yu, Cheng-ju 26 August 2010 (has links)
none
539

Model catalytic studies of single crystal, polycrystalline metal, and supported catalysts

Yan, Zhen 15 May 2009 (has links)
This dissertation is focused on understanding the structure-activity relationship in heterogeneous catalysis by studying model catalytic systems. The catalytic oxidation of CO was chosen as a model reaction for studies on a variety of catalysts. A series of Au/TiO2 catalysts were prepared from various metalorganic gold complexes. The catalytic activity and the particle size of the gold catalysts were strongly dependent on the gold complexes. The Au/TiO2 catalyst prepared from a tetranuclear gold complex showed the best performance for CO oxidation, and the average gold particle size of this catalyst was 3.1 nm. CO oxidation was also studied over Au/MgO catalysts, where the MgO supports were annealed to various temperatures between 900 and 1300 K prior to deposition of Au. A correlation was found between the activity of Au clusters for the catalytic oxidation of CO and the F-center concentration in the MgO support. In addition, the catalytic oxidation of CO was studied in a batch reactor over supported Pd/Al2O3 catalysts, a Pd(100) single crystal, as well as polycrystalline metals of rhodium, palladium, and platinum. A hyperactive state, corresponding to an oxygen covered surface, was observed at high O2/CO ratios at elevated pressures. The reaction rate at this state was significantly higher than that on CO-covered surfaces at stoichiometric conditions. The oxygen chemical potential required to achieve the hyperactive state depends on the intrinsic properties of the metal, the particle size, and the reaction temperature. A well-ordered ultra-thin titanium oxide film was synthesized on the Mo(112) surface as a model catalyst support. Two methods were used to prepare this Mo(112)- (8x2)-TiOx film, including direct growth on Mo(112) and indirect growth by deposition of Ti onto monolayer SiO2/Mo(112). The latter method was more reproducible with respect to film quality as determined by low-energy electron diffraction and scanning tunneling microscopy. The thickness of this TiOx film was one monolayer and the oxidation state of Ti was +3 as determined by Auger spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy.
540

Laser-assisted scanning probe alloying nanolithography (LASPAN) and its application in gold-silicon system

Peng, Luohan 15 May 2009 (has links)
Nanoscale science and technology demand novel approaches and new knowledge to further advance. Nanoscale fabrication has been widely employed in both modern science and engineering. Micro/nano lithography is the most common technique to deposit nanostructures. Fundamental research is also being conducted to investigate structural, physical and chemical properties of the nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. Doing so, experimental approaches combined with energy analysis were carried out. A delicate hardware system was designed and constructed to realize the nanometer scale lithography. We developed a complete process, namely laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures in gold-silicon (Au-Si) system. As a result, four aspects of nanostructures were made through different experimental trials. A non-equilibrium phase (AuSi3) was discovered, along with a non-equilibrium phase diagram. Energy dissipation and mechanism of nanocrystalization in the process have been extensively discussed. The mechanical energy input and laser radiation induced thermal energy input were estimated. An energy model was derived to represent the whole process of LASPAN.

Page generated in 0.0695 seconds