• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1533
  • 298
  • 199
  • 166
  • 108
  • 66
  • 38
  • 32
  • 22
  • 21
  • 20
  • 17
  • 17
  • 17
  • 17
  • Tagged with
  • 3089
  • 665
  • 333
  • 307
  • 270
  • 266
  • 220
  • 177
  • 174
  • 164
  • 155
  • 143
  • 141
  • 139
  • 132
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
791

Gold exploration northeast of Ngundu Halt, northern marginal zone of the Limpopo Belt, Zimbabwe

Simango, Robert Zulu 30 May 2013 (has links)
Gold exploration was conducted in northern margin, granulite-facies rocks of the Limpopo Belt. Methods used in the prospecting include drainage, soil and rock geochemistry, geophysical surveys, geological mapping, trenching and diamond drilling. These techniques successfully led to the discovery of two medium size, mesothermal gold deposits (Grid 2s and Grid 4). Objectives of this study were to (a) document the exploration methodology used; (b) describe the regional geology; (c) establish a mineral deposit model; (d) outline the methods and results of various exploration techniques; (e) outline follow-up procedures and evaluation of anomalies; and (f) discuss results of the exploration exercise and conclusions. The granulite-facies terrain comprises Charno-enderbites, mafic and felsic to intermediate metavolcanic rocks and meta-sediments. Renco Mine situated immediately east of the study area, was selected as the ore deposit model for the exploration program. Gold mineralization occurs in shear and thrust zones within an enderbite. The gold deposits are structurally controlled by a first-order, Sinistral transcrustal Mauch Shear Zone, which is parallel to a regional east-northeast penetrative foliation. The deposits are in dilation zones where the Mauch Shear (a) is intersected by a dextral east-west shear (Grid 2s), or (b) has a sinistral splay (Grid 4 and Renco). Close to these deposits, the Mauch Shear is in contact with a "greenstone belt", which is a possible source of crustal metamorphic ore fluids and gold. The Grid 2s deposit contains fine-grained, disseminated free gold, and small amounts of pyrrhotite, pyrite and chalcopyrite in quartz veins within third-order shears in K-feldspar granite. K-feldspar, sericitic, silicic, sulphidation and carbonate alteration characterizes the deposit, which has a proposed mantle-degassing model. The Grid 4 deposit is magmatic porphyry-type, with CuMo and Au in third- and fourth-order shears respectively. Mineralization comprises disseminated to semi-massive pyrrhotite, pyrite, chalcopyrite, sphalerite, bismuth, molybdenite and gold. Wall rock alteration includes biotitic, chloritic, silicic, sulphidation and carbonate. In Grid 2s, Grid 4 and Renco deposits, the alteration mineral assemblages are in three facies, which are granulite, amphibolte and greenschist. In the three deposits, the mineralization occurs with the amphibolite-facies, indicating post-peak, retrograde metamorphic conditions. / Illustrations (maps) only available in print form at Cory Library / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
792

Geochemistry of Gold One tailings and associated contaminant transport into the Randfontein area, Witwatersrand Basin.

Abrahams, Jamie-Leigh Robin January 2017 (has links)
Magister Scientiae - MSc (Earth Science) / The city of Randfontein, in the Witwatersrand, hosts several slimes and tailings storage facilities which pose potential threat to the environment in the form of acid mine drainage (AMD). The latter, readily scavenges toxic metals, contaminating surrounding soils and water resources, thereby potentially compromising the overall environmental- and public health of the area. To this end, three slimes sections (section T001, T002 and T003) from the Gold One Millsite Slimes Complex were investigated, with the aim of understanding metal release from the slimes dam into the Randfontein area. To achieve this, the mineralogical and geochemical factors controlling metal release were investigated using combined core log analysis, cluster and discriminant analysis, x-ray diffraction analysis, bulk geochemical analysis, acid base accounting methods and selective sequential extraction procedures.
793

The Doornhoek gold deposit in the Limpopo Belt, South Africa : an example of an Archaean shear zone hosted deposit formed at high-grade metamorphic conditions

Stefan, Laurentiu Daniel 07 September 2012 (has links)
D.Phil. / Lode-gold deposits usually occur in granite-greenstone terranes of low- to medium-grade of metamorphism. Such deposits are well studied in terms of their petrogenesis, ore mineralogenesis and structural control. Gold occurrences associated with high-grade terranes are, however, also known from the Yilgam Block in Australia (Griffin's Find) and Northern Marginal Zone of the Limpopo Belt in Zimbabwe (Renco), but the genesis of these deposits are not as well understood as that of their lower grade counterparts. The Doornhoek lode-gold deposit, situated in the granulite terrane of the Southern Marginal Zone of the Limpopo Belt in South Africa displays an important sequence of structural and metamorphic events that proved to be very useful in understanding the formation of metamorphic gold deposits formed under upper-amphibolite - granulite facies conditions. Structurally the Doornhoek gold deposit is situated in a large low-angle D, fold plunging towards the west at 10-15 °. The fold structure and the mineralised zone are affected by D2-strike-slip shear zones which occur both within and along the outer contacts of the ore zone. The gold deposit is also affected by southward verging D3 shear zones which thrusted Baviaanskloof Gneiss over and onto the Doomhoek Ore Body. The Doomhoek Gold Deposit is also situated in a highly altered zone of metasomatised rocks within the zone of rehydration of the Southern Marginal Zone. The actual Ore Body is represented by a remnant of BIF, mafic and ultramafic rocks surrounded by Baviaanskloof Gneiss. The alteration process, caused by high-temperature fluids channeled along the D2 shear zones was responsible for the formation of the different metasomatic lithologies. These altered rocks initially experienced a regional hydration event followed by the high-temperature metasomatic event. The very intense metasomatic activity was synchronous with the growth of prograde-zoned garnet and gold mineralisation associated with quartz veins. This scenario is suggested by the fact that gold associated with Zn, Ge, As, Y, Zr and Ni was trapped in the mineralised inner-ring of the zoned garnet, by the REE pattern and presence of Th232 and U238 in the biotite-garnetiferous formation, and by the mobility of major elements such as A1 203, K2O, SiO2 and TiO2 associated with the metasomatic activity. The alteration is probably related to externally derived magmatic fluids mixed with metamorphic aquitards that were active in both open and close system conditions along deep seated D2 shear zones. These fluids are characterised by the presence of high-density CO 2-rich and high salinity fluid inclusions. The gold mineralisation is closely associated with pyrrhotite, magnetite, lollingite, arsenopyrite, chalcopyrite, ilmenite, pentlandite, sphalerite and gold. The gold has a very low fineness (520), typical of gold precipitated from hydrothermal solutions at high-grade conditions. The textural relationships of the ore minerals hosted by the quartz veins, furthermore demonstrate a prograde pattern of mineralisation, similar as in the case of mineralisation trapped within different zones of the zoned garnet porphyroblast. The dark inner-ring of the garnet is characterised by high concentrations of sulphides, oxides and gold. The mineralising event initially deposited sphalerite and arsenopyrite at low temperatures of up to 569 °C with temperatures increasing to 673 °C, and even up to 750°C when lollingite was formed. Most of the gold is related to As-rich arsenopyrite, lollingite and graphite at temperatures ranging from upper-amphibolite facies to lower-granulite facies metamorphic conditions. The Doornhoek gold deposit is an example of a high-grade lode-gold deposit formed during a prograde hydrothermal event and demonstrates unequivocally the possibility of economic gold mineralisation during granulite facies conditions. This observation has important implications for gold exploration in high-grade geological terranes that to date have been mostly ignored by the gold mining industry.
794

Synthesis, study and application of NHC-gold(I) complexes

Veenboer, Richard M. P. January 2017 (has links)
The development of procedures for the synthesis of valuable organic molecules constitutes an important part of chemistry. The goal of improving the efficiency of existing methodologies can be fulfilled by use of metal catalysts. Recent developments in the field of homogeneous gold catalysis have contributed to these efforts and continued investigations assure future innovations. Chapter 1 summarises the properties of gold and ligand-supported gold(I) complexes and demonstrates how a detailed understanding of its reactivity and possible bonding interactions with various substrates facilitates the development of well-defined catalytic systems. Particular attention is given to N-heterocyclic carbenes, highly tunable ligands that stabilise a wide range of different transition metal complexes. Three chapters describe syntheses and studies of known and new complexes. Chapter 2 discusses expedient syntheses of key NHC-gold(I) complexes and catalysts. Chapter 3 constitutes studies to the behaviour of the commonly used tetrafluoroborate counterion in a particular IPrCl -gold(I) complex. Chapter 4 de- scribes the synthesis of a range of IPr-gold(I) carbanion complexes from the widely studied IPr-gold(I) hydroxide synthon, the study of their properties and exploration of their reactivity. Catalytic applications in transformations of alkynes and alcohols are described in the last three chapters. Chapter 5 details the development of efficient NHC-gold(I)-catalysed procedures for the synthesis of vinyl ethers through addition reactions of aliphatic and benzylic alcohols to alkynes. Benzylic alcohols were found to undergo gold-catalysed dehydration under specific conditions and Chapter 6 discloses the NHC-gold(I)-catalysed dehydrative formation of ethers from phenols and benzylic alcohols. Appendix A describes preliminary explorations to the complimentary use of Brønsted acidic compounds as catalysts for the formation of products with new C – C bonds from benzylic alcohols and phenols.
795

The Patchway Gold Mine : a mineragraphic and petrographic examination of ore from the Patchway Gold Mine, Rhodesia, and an appraisal of the relationship between gold mineralisation and geological structure

Ward, J H W January 1969 (has links)
A remarkable correlation between hydrothermal gold mineralisation and geological structure is discussed. The mineralisation occurs in vein quartz which occupies a fissure in Archaean greenstones of the Basement Complex in Rhodesia, It has been determined that gold which is silver-rich is typical of low-grade ore, and is associated in space with sulphides that crystallised early in paragenesis. Silver-poor gold is characteristic of highgrade ore which is concentrated along the crestal zone of anticlinal warps in the fissure. It is suggested that the local pattern of fracturing and folding is related to fundamental wrench faulting.
796

The geology of the Vaal Reefs Gold Mine, Western Transvaal

Jacob, Roger E January 1966 (has links)
Rocks forming part of the Main-Bird Series and the Kimberley-Elsburg Series of the Upper Division of the Witwatersrand System are found in the mine. The sequence studied starts with the Middle or MB 6 Zone of the Livingstone Stage followed by the Upper or MB 5 Zone. The Vaal Roof, forming the base of the Vaal Stage, rests disconformably on the older rocks. The Stage is subdivided into the Vaal Reef Zone, the Lower Vaal Zone, the Argillaceous Zone and the Upper Vaal Zone. The lower and upper contacts of the Argillaceous Zone are gradational. The Kimberley Stage follows unconformably and comprises the basal Gold Estates Conglomerate Zone, the Denny's Zone and the Gold Estates Zone. The overlying Elsburg Stage may be subdivided into the Bastard Zone and the Upper Elsburg Zone on lithological grounds. Most of the rocks are indurated quartz wackes with only a few orthoquartzite horizons such as the Denny's Zone and the immediate hangingwall of the Vaal Reef. Microscopically the rocks consist of detrital quartz and chert grains in a fine-grained sericitic to partly siliceous matrix which may constitute more than 50 per cent of the rock. Heavy minerals, such as zircon, chromite, rutile, leucoxone, pyrite, tourmaline, epidete, apetite and magnetite, occur in most of the zones. The Vaal Reef, the economic horizon, is of small-pebble, oligomictic conglomerate, often containing thucholite seams and granules, and varying in thickness from a mere parting to more than five feet. There appears to be a correlation between greater pebble size and higher ore grade but no correlation of sorting coefficients and gold value. The mineralogy of the Vaal Reef was studied by means of polished sections and heavy mineral concentrates. The minerals identified include gold, pyrite of several ages, pyrrhotite, chalcopyrite, uraninite, galena, brannerite, gersdorffite or cobaltite, skutterudite, linnacite, danaite, niccolite, pentlandite, magnotite, zircon, chromite, rutile, leucoxine, monazite, sphalerite, tourmaline, and fluorite. From a study of the silver content of gold in the Vaal Roof it is concluded that the variations in apparent fineness are a reflection of the composition of the gold in the original source rocks. There is a definite uranium-gold relationship in the Vaal Roof. With increase in grade the amount of U₃O₈ increases but the U₃O₈:AU ratio decreases. Use of these reations may indciate the payability in cases of incomplete core recovery.The intrusive rocks were studies in detail. Six types of intrusive rocks were found. From oldest to youngest those are quartz diabase (of three varieties), amygdaloidal diabase, ilmenite mela-microdiorite, mottled microdiorite, olivine lamprophyre and ankeritic beforsite, ranging in age from Lower Ventersdorp to post-Karroo. Most of the intrusives are highly altered due to the effects of regional metamorphism and deuteric alteration. Later formations, such as the Langgeleven and Allanridge Formations of the Ventersdorp System and the Black Roof and Dolomite Series of the Transvaal System, occur on the property. The various formations have been subjected to faulting and folding.
797

The geology and evaluation of the "A"-reef at No.3 shaft, Western Holdings Mine, Welkom goldfield

Blamey, Nigel John Frederick January 1992 (has links)
The "A" -Reef occurs within the Aandenk Formation of the Central Rand Group, Witwatersrand Supergroup, in the Welkom Goldfield. It comprises the Witpan and Uitsig Reefs which are both oligomictic conglomerates, and are exploited for their gold content by Anglo American Corporation. The main Witpan channel complex is orientated in a NW-SE direction and occurs close to No.3 Shaft of Western Holdings Mine where it is currently being mined. The Witpan Reef varies in thickness from 7-220cm, with lateral facies changes controlling the thickness. Within the reef, gold is associated with degradation surfaces, carbonaceous material, increase in pebble sphericity, and channel edges. Two channel edges have yielded the best gold values on No.3 Shaft although the potential for further payable gold lies in the recognition of sieve conditions. The potential also exists for extensions of the "carbon"-bearing Uitsig channel currently being mined on President Steyn Mine. The palaeo-environment proposed for formation of the Witpan Reef is a braidplain that was partly reworked by a brief transgression. Ore evaluation using geostatistics was considered a valid technique as the dataset is sufficiently well structured. Semi-variograms in the channel and across-channel directions differ markedly. It was found that variograms of gold in cmg/t lacked sufficient structure for modelling, however, log semi-variogram modelling followed by simple log-kriging and back-transformation, proved to be the most successful method. Owing to the morphology and distribution of gold within the reef, a geologically based geostatistical valuation method is proposed. The potential for further exploration of "A" -Reef depends on a substantially higher gold price. In this event, exploration of Uitsig Reef to the southwest of the current mining area is recommended as well as a new exploration strategy for Witpan Reef.
798

Gold mineralization in archaean cherts and iron-formations a review of the economic geology

Bellamy, R E S January 1979 (has links)
The distribution of gold in igneous rocks and minerals is described and discussed. Not all the gold in igneous rocks is contained within early formed crystal lattices. Evidence that gold can be associated with late stage crystallizing phases is described. It is concluded that some of the gold in hydrothermal and volcanogenic deposits may have come from a primary magmatic source rather than having been leached from solid country rock. Gold is probably transported as chloride complexes at temperatures greater than about 300°C. At lower temperatures it is probably transported with other metals as sulphide and thio-sulphide complexes. The precipitation of gold from the transporting medium is brought about by changes in the physico-chemical conditions within that medium. Decrease in pressure is probably not a major cause of precipitation in volcanogenic environments. The geology of volcanogenic iron-formations is described and discussed, relative to the development of greenstone belts. Oxide facies iron-formations were formed in shallow oxidizing environments. They are associated with volcanogenic and clastic sediments. Sulphide facies iron-formations were precipitated in the deeper parts of geosynclinal structures. They are associated with mafic and ultramafic rocks similar to modern oceanic volcanic assemblages. Carbonate facies iron-formations were deposited in the regions between oxide facies and sulphide facies. Other banded iron-formations are found associated with base metal massive sulphide deposits related to arctype volcanic centres. These deposits are found in the regions where carbonate facies iron-formations were formed. Exploration for and exploitation of gold deposits in Archaean iron-formations are discussed. Geochemical exploration programmes are aided by the association of gold with trace amounts of base metals. Geophysical exploration methods that can be employed include magnetometer, I.P. and E.M. surveys. The metallurgical treatment of the ores should include "roasting" because a large proportion of the gold occurs as submicroscopic grains within sulphide mineral crystals.
799

Gold exploration in tropical and sub-tropical terrains with special emphasis on Central and Western Africa

Breedt, Machiel Christoffel January 1996 (has links)
The aim of this dissertation is an attempt to' provide a general guide for future gold exploration in tropical and sub-tropical terrains. The dissertation includes a brief discussion of the various exploration techniques used in regional and local exploration. This provide the necessary background knowledge to discriminate between the constraints and applications and to be able to select the techniques which are more suitable for gold exploration in tropical and sub-tropical terrains. Weathering, gold geochemistry and soil formation, fields often neglected, are emphasized to illustrate the importance of the mobility and dispersion of gold in the weathering of the lateritic soil profile. A sound knowledge and experience in regolith mapping is to the advantage of the explorationist. Case studies with special emphasis on Central- and Western Africa are included to illustrate the effectiveness of some of the gold exploration techniques in tropical and sub-tropical terrains. Gold exploration is a highly complex and demanding science and to be successfull involves the full intergration of all geological, geochemical and geophysical information available. An intergrated exploration method and strategy would enhance the possibility of making viable discoveries in this highly competative environment where our mineral resources become more depleted every day. Where applicable, the reader is refered to various recommended literature sources to provide the necessary background knowledge which form an integral part of gold exploration.
800

The geology of the Welkom Goldfield with special reference to the "A", "B" and Beatrix Reefs

Dwyer, Gordon Bransby January 1993 (has links)
The first Witwatersrand gold deposits in the Orange Free State were discovered under younger cover rocks in the 1930's with the aid of drilling and geophysics. The Welkom gold deposits are found in the sedimentary rock sequences of the Central Rand Group, which represent unconformity bounded genetic packages. The structural configuration of the goldfield is one of a north to south trending synform that is split near it's axis by the De Bron and Homestead faults. The "B" Reef is a highly variable, erratically mineralised reef that lies on an unconformity at the base of the Spes Bona Formation. The "A" Reef Zone consists of several placers 1 including the "Reworked BPM" 1 the Witpan, the Uitsig, the Hanging Wall Grits and the Upper "A" Reef. The Beatrix Reef lies at the base of the Eldorado Formation on an unconformity surface overlying the Virginia Formation in the southern part of the Welkom Goldfield. The origin of gold in the Witwatersrand basin can be classified into the modified placer theory, the syngenetic theory and the epigenetic theory. From the distribution of basin edge unconformities it can be deduced that the Welkom fan depository was tectonically active on the western, southern and eastern margins during sedimentation. Palaeocurrent studies indicate that sediment was transported predominantly from the south and west. It is thought that the "B", "A" and Beatrix Reefs were all deposited in a braided stream environment. A multidisciplinary approach to ore evaluation of Witwatersrand deposits is considered to be the best method, where sedimentology, geostatistics and structural geology are used.

Page generated in 0.1287 seconds