• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 34
  • 23
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The mechanism of action of iminosugars as antiretrovirals

Spiro, Simon George January 2014 (has links)
No description available.
32

Expansion of Myeloid-Derived Suppressor Cells Promotes Differentiation of Regulatory T Cells in HIV-1+ Individuals

Wang, Ling, Zhao, Juan, Ren, Junping P., Wu, Xiao Y., Morrison, Zheng D., El Gazzar, Mohamed A., Ning, Shunbin, Moorman, Jonathan P., Yao, Zhi Q. 19 June 2016 (has links) (PDF)
Objective: Regulatory T cells (Tregs) contribute to HIV-1 disease progression by impairing antiviral immunity; however, the precise mechanisms responsible for the development of Tregs in the setting of HIV-1 infection are incompletely understood. Design: In this study, we provide evidence that HIV-induced expansion of monocytic myeloid-derived suppressor cells (M-MDSCs) promote the differentiation of Foxp3+ Tregs. Methods: We measured MDSC induction and cytokine expression by flow cytometry and analyzed their functions by coculturing experiments. Results: We observed a dramatic increase in M-MDSC frequencies in the peripheral blood of HIV-1 seropositive (HIV-1+) individuals, even in those on antiretroviral therapy with undetectable viremia, when compared with healthy participants. We also observed increases in M-MDSCs after incubating healthy peripheral mononuclear cells (PBMCs) with HIV-1 proteins (gp120 or Tat) or Toll-like receptor 4 ligand lipopolysaccharides in vitro, an effect that could be abrogated in the presence of the phosphorylated signal transducer and activator of transcription 3 inhibitor, STA-21. Functional analyses indicated that M-MDSCs from HIV-1+ individuals express higher levels of IL-10, tumor growth factor-β, IL-4 receptor α, p47phex, programmed death-ligand 1, and phosphorylated signal transducer and activator of transcription 3 – all of which are known mediators of myelopoiesis and immunosuppression. Importantly, incubation of healthy CD4+ T cells with MDSCs derived from HIV-1+ individuals significantly increased differentiation of Foxp3+ Tregs. In addition, depletion of MDSCs from PBMCs of HIV-1+ individuals led to a significant reduction of Foxp3+ Tregs and increase of IFNγ production by CD4+ T effector cells. Conclusions: These results suggest that HIV-induced MDSCs promote Treg cell development and inhibit T cell function – a hallmark of many chronic infectious diseases.
33

Stabilité et fonctionnalité des glycoprotéines de l’enveloppe du VIH-1 recombinant CRF01_AE : rôle de l’histidine en position 375

Zoubchenok, Daria 10 1900 (has links)
Les glycoprotéines d'enveloppe du virus de l'immunodéficience humaine de type 1 (VIH-1) sont impliquées dans une étape importante du cycle de réplication, l’entrée virale. La liaison de la glycoprotéine gp120 à CD4 contribue à la fixation du virus à la cellule cible et déclenche des changements conformationnels dans celle-ci afin de permettre à la gp120 se lier au récepteur de chimiokine CCR5 ou CXCR4. Contrairement à tous les enveloppes du groupe phylogénétique M, qui possède une sérine à la position 375, ceux du clade CRF01_AE possèdent une histidine. Ce résidu fait partie d'une cavité "Phe43" dans laquelle le résidu 43 de CD4 fait contact avec la gp120. Ici, nous avons évalué les conséquences fonctionnelles du résidu 375 en le remplaçant par une serine dans deux enveloppes CRF01_AE (CM244 et 92TH023), la sérine étant présente dans tous les autres clades du groupe M. Nous avons observé que la réversion de l'acide aminé 375 vers une sérine entraine une perte de fonctions des deux Envs CRF-AE tel que mesuré par une perte de l'infectivité et leur capacité à médier la fusion cellule à cellule. Le phénotype observé était la conséquence d’une très faible interaction avec CD4, qui n’était pas le résultat d’une enveloppe défectueuse ou instable. Par conséquent, la modification de l’acide aminé en position 375 a aussi altéré la sensibilité de neutralisation du virus par sCD4, qui en était diminuée. De plus, on a observé que certaines mutations des couches topologiques du domaine interne de la gp120 ont permis un rétablissement partiel de la fonctionnalité en restaurant l’interaction avec CD4. Les niveaux d’infectivité et de fusion des mutants des couches topologiques se rapprochant des enveloppes sauvages de CRF01_AE suggèrent une coévolution entre la cavité phe43 et les résidus du domaine interne de la gp120. Une compréhension des différences qui existent entre les enveloppes de CRF01_AE et les enveloppes de virus du groupe M, permettra d’avoir une idée sur la fonctionnalité des glycoprotéines d'enveloppe. Il serait possible de mettre en évidence des mécanismes impliqués dans les changements conformationnels des Envs qui permettent l’évasion des anticorps dirigés contre elle. De plus, ces possibles différences dans les enveloppes de CRF01_AE pourraient être exploitées pour le développement des différentes approches vaccinales. / The envelope glycoproteins (Env) from human immunodeficiency virus type 1 (HIV-1) mediate viral entry. The binding of the HIV-1 gp120 glycoprotein to CD4 contributes to the attachment of the virus to the target cell and triggers conformational changes in gp120 that allow high-affinity binding to the chemokine receptor CCR5 ou CXCR4. Contrary to all other Envs from the same phylogenetic group M, which possess a serine at position 375, the majority of CRF01_AE strains possess a histidine. This residue is part of the “Phe43” cavity, where residue 43 of CD4 engages with the gp120. Here we evaluated the functional consequences of replacing this residue in two CRF01_AE Envs (CM244 and 92TH023) by a serine, present in all the other clades from group M. We observed that reversion of the 375 amino acid to a serine resulted in a loss of functionality of both CRF_AE Envs, as measured by a loss in infectivity and their ability to mediate cell-to-cell fusion. The observed phenotype was the result of a weak interaction with CD4, which was not due to defective processing or trimer stability of these Envs. Therefore, modification of the amino acid at position 375 has also altered the sensitivity of virus neutralization by sCD4, which was reduced. Importantly, mutation of certain residues of the gp120 inner domain layers were able to partially restore wild-type levels of infectivity and cell-to-cell fusion to both CRF01-AE H375S Envs, suggesting a co-evolution of the Phe43 cavity and the gp120 inner domain. An understanding of the differences between the CRF01_AE envelopes and envelopes from group M presenting a serine at position 375 will provide a better knowledge about the functionality of the envelope glycoproteins. Among other things, it would be possible to identify the mechanisms involved in conformational changes of glycoproteins as well as those involved in the escape of envelope recognition by Env specific antibodies. Moreover, these possible differences in CRF01_AE envelopes could be exploited for the development of different vaccine approaches.
34

Développement d'un test d'interaction entre la protéine d'enveloppe du VIH-1 (gp120) et les corécepteurs CCR5/CXCR4 par résonance plasmonique de surface : criblage et optimisation d'inhibiteurs de l'entrée virale

Connell, Bridgette 16 March 2012 (has links) (PDF)
Il est bien établi que la gp120 du VIH-1 se fixe aux héparane sulfate (HS) cellulaires, par le biais de la boucle V3 ce qui favorise l'infectivité virale. Cependant, une variété de polyanions solubles, conjugués à CD4 (mCD4-HS12) a des propriétés antivirales et a montré in vitro une activité contre le VIH-1 à de très faibles concentrations (nM). En raison de la complexité structurale des HS, le criblage d'oligosaccharides différenciellement sulfatés pour améliorer l'activité de la molécule serait trop difficile. En vue d'obtenir une molécule plus spécifique, de plus haute affinité et plus facile à produire, des peptides mimant les HS ont été synthétisés par nos collaborateurs. Notre but était de cribler ces peptides pour leur capacité à inhiber l'entrée de VIH-1. À cette fin, nous avons mis en place une plateforme permettant d'immobiliser CCR5 et CXCR4 solubilisés sur des biocapteurs (Biacore) pour cribler des molécules qui inhibent la liaison de gp120-CD4 aux corécepteurs. Pour contrôler le processus de solubilisation, CXCL12, le ligand naturel de CXCR4, a été injecté sur CXCR4 immobilisé. Les affinités des isoformes de CXCL12 (α et γ) pour CXCR4 ont été calculées dans les fourchettes de valeurs précédemment obtenues avec des techniques différentes, prouvant ainsi la fonctionnalité de notre système et nous permettant d'étudier les mécanismes de fixation de ces deux isoformes sur CXCR4 ainsi que leur régulation par HS. Le système a ensuite été utilisé pour cribler la capacité d'inhibition des peptides mimétiques du HS. Chaque peptide, [S(XDXS)n] contient des acides aminés qui imitent les groupes hydroxyles, carboxyles et sulfates des HS. Le peptide contenant des résidus sulphotyrosines, une fois conjugué à mCD4 (mCD4-P3YSO3), montre un IC50 de l'ordre du nM, pour l'inhibition simultanée de la liaison de gp120 aux HS, à CD4, aux anticorps, aux corécepteurs ainsi que l'infection par VIH-1 in cellulo. Il constitue le premier inhibiteur bivalent de l'entrée qui cible à la fois les virus R5 et X4 et le concept d'un peptide mimétique des HS se prête à une analyse structurale et fonctionnelle de la liaison des chaînes HS aux protéines, une nouvelle technique dans ce domain
35

Design and Characterization of HIV-1 ENV Derived Immunogens

Purwar, Mansi January 2016 (has links) (PDF)
The Human Immunodeficiency Virus (HIV) is a member of the retroviridae family from lentivirus genus which primarily infects CD4+ T cells and also to lesser degree monocytes, macrophages, and dendritic cells causing progressive failure of the immune system, ultimately leading to development of acquired immunodeficiency syndrome (AIDS). Currently ~ 37 million people are infected with HIV-1 with approximately 2 million new infections occurring every year (UNAIDS, 2016). Developing safe, effective, and affordable vaccines to prevent HIV infection is the best hope for controlling the HIV/AIDS pandemic. Envelope glycoprotein (Env) on the HIV-1 virion surface is synthesized as a single precursor protein gp160 which is cleaved by furin to form the gp120 and gp41 subunits. gp41 is inserted into the membrane, while gp120 remains non-covalently associated with the ectodomain of gp41 to form a trimer of heterodimers. gp120 binds to the CD4 receptor on CD4+ T cells, which triggers a series of conformational changes leading to the exposure of co-receptor binding sites on gp120. Subsequent binding to the co-receptor (CXCR4 or CCR5) on T-cells initiates fusion of cellular and viral membranes via gp41 subunit. The envelope glycoprotein gp120, on the virion surface is the most accessible component of HIV-1 to the host immune system, and the target of most of the neutralization response. However, the virus has evolved many efficient ways to escape this immune surveillance. Extensive glycosylation of gp120 is one way by which it masks critical neutralization epitopes and the presence of immunodominant long variable loops focuses the immune response away from conserved regions. Certain conserved epitopes are cryptic and get exposed only after gp120 binds to its receptor. Also gp120 and gp41 are highly flexible molecules, attached in a non-covalent fashion to form a trimer of heterodimers, leading to inherent metastability of the Env. This results in exposure of a large number of non-native conformations to the immune system and thus minimizes elicitation of neutralizing antibodies. Despite these defense mechanisms, about 20-30% of HIV-1 patients do generate a broad neutralization response. Although these bNAbs and their epitopes have been identified, eliciting similar bNAbs through immunization is challenging. Monomeric gp120 when used as an immunogen elicits non neutralizing antibodies. This indicates that the epitopes of bNAbs are not present in the right conformation on this molecule. A rational design approach which focuses the immune response towards specific epitopes targeted by bNAbs is required, with the aim to maximize the exposure of conserved neutralization epitopes and to simultaneously ensure minimal exposure of variable non neutralizing epitopes. This can likely be achieved either by (a) stabilization of native Env trimers, or/and by (b) protein fragment design. Chapter 1 gives a brief description of HIV-1 virus. Structural features of the Env protein are described along with epitopes targeted by various bNAbs. Various strategies employed towards structure based vaccine design are discussed. One of the strategies towards rational vaccine design is using protein fragment based approaches. Grafting epitopes onto heterologous scaffolds is a promising approach which can provide more structural stability to the epitope, helps focus immune response on the epitope of interest and can be employed in a prime boost strategy for immunization studies. In a scaffold based approach we used crystal structure information of gp120 in complex with bNAb b12 to define the epitope of this antibody. In Chapter 2 we use this epitope information to graft the epitope on an unrelated scaffold protein to design unique epitope scaffolds. We report a computational strategy to graft the discontinuous epitope of b12 antibody onto different scaffold proteins. Our strategy focuses on identifying the best match of the target scaffold to the query protein so as to cause the least structural disturbance in the scaffold protein. The best hits were screened for binding to b12 using Yeast Surface Display (YSD). Random mutant libraries were also generated to screen for better b12 binders using YSD. We further characterized a few of these epitope scaffolds after purifying them from bacterial systems. One of the epitope scaffolds 1mkh_E2 bound to b12 with a KD value of 7.5µM. 2bodx_03, an unoptimized epitope scaffold reported previously (Azoitei et al, 2011) binds b12 with a KD value of 300μM. Thus our epitope scaffold 1mkh_E2 shows reasonable binding to b12 without any optimization. We are currently purifying other b12 epitope scaffolds and will be characterizing them for binding to b12. We have previously used a protein minimization strategy to design fragments of gp120, called b122a and b121a comprising a compact beta barrel on the lower part of the outer domain in order to focus the immune response towards the b12 epitope. (Bhattacharyya et al, 2013). These were bacterially expressed, found to be partially folded, however, could bind the broadly neutralizing antibody b12 with micromolar affinity. In rabbit immunization studies sera obtained following four primes with the b122a fragment protein and two boosts with full-length gp120 showed broad neutralization of a panel of multiple viruses across different clades (Bhattacharyya et al, 2013). In the present work, These designs were further stabilised by introducing various disulphides. One of the disulphide mutants b122a1-b showed better binding to b12 compared to b122a and increased protection to protease digestion. However these are partially structured as assessed by CD. In Chapter 3 we attempted to evolve stabilized versions of b122a1-b by using a genetic selection based on antibiotic resistance described previously (Foit et al, 2009). We were successfully able to show an in-vivo stability difference between b122a and b122a1-b. From the library generated in the background of b122a1-b using random mutagenesis, a few apparently stabilized mutants were isolated. Most of these mutations were hydrophobic to polar substitutions at exposed positions while a few of the mutations were substitutions with similar side chain chemistry as in wildtype. In future studies we will measure mutant stabilities and binding affinity to b12. A set of similar fragment immunogens were also designed based on subtype C CAP210 gp120 sequences. In Chapter 4 we describe various immunization studies comprising of different sets of b12 epitope based fragment immunogens. In one study we displayed some of these immunogens on Qβ VLPs. In another study, we tested subtype C based fragment immunogens. The humoral immune response was probed in terms of generation of antibodies against the immunogens using ELISA. Neutralization activity of the sera was measured in a standard TZM-bl assay. Sera raised against these particles in rabbit immunization studies could neutralize Tier1 viruses across different subtypes. The group primed with particles displaying b122a1-b and the group primed with b122a conjugated to particle in the presence of adjuvant contained significantly higher amounts of antibodies directed towards the CD4bs than sera from the group primed with empty particles and boosted with gp120. This study demonstrates the overall utility of the particle based display approach. In immunization studies with subtype C derived fragment immunogens as primes, no significant neutralization was seen even for Tier 1 viruses. In this study, the group primed and boosted with full length gp120 performed better than other groups suggesting that antibodies elicited against regions present in these subtype C priming immunogens are non-neutralizing. One of the rational vaccine design strategies is by stabilization of native Env trimers. In previous studies, a disulfide bond was engineered between gp120 and gp41 of Env to stabilize the interactions (SOS gp140). An I559P mutation was also introduced to stabilize the native gp41 conformation in the context of disulfide engineered Env (SOSIP gp140). The purified, soluble SOSIP gp140 immunogens were trimeric and cleaved properly and are believed to be one of the closest mimics of native Env trimers. However, these immunogens have so far failed to elicit broad neutralizing responses. In Chapter 5, we use structural information derived from high resolution atomic structure of native like cleaved gp140 BG505-SOSIP, to provide an alternate strategy to form uncleaved trimeric gp140s by cyclic permutation to design molecules that mimic cleaved trimers. The structure reveals that the gp41 C-terminus is in very close proximity (~8Å) to the N-terminus of gp120 from an adjacent subunit. We have designed a cyclic permutant of gp140 from JRFL strain where the gp41 C terminus is now connected to the gp120 N-terminus with a short linker. This novel connectivity results in preservation of the native gp41 N-terminus along with a much shorter linker length than in conventional gp140. This might promote trimer folding and stabilization because of the resulting decreased magnitude of conformational entropy change during folding. The structure also reveals that the gp120 C-terminus is close to the trimer axis, and due to cyclic permutation, this becomes the new C-terminus of gp140. To further stabilize the trimeric form, we have attached a foldon trimerization domain at the C terminus. The protein has been expressed and purified from mammalian cells. The protein exists primarily as a trimer in solution as assessed by SEC-MALS. It shows better binding to broadly neutralizing antibody b12 when compared to b6, a non-neutralizing antibody. Further biophysical characterization of the protein is in progress. We have previously described design of a bacterially expressed outer domain derivative of gp120 (ODEC) that had V1/V2 and V3 loops deleted and bound CD4 (Bhattacharyya et al, 2010). To improve the initial ODEC design, three different rational design strategies were used. In the first approach, residue frequency based methods were used to design a construct named ODECConsensus. In another approach, a cyclic permutant of ODEC (CycV4OD) was designed with new N and C termini in the flexible V4 loop. In the third approach the bridging sheet (BS) region was deleted from ODEC to form ODECΔBS. In Chapter 6 we have used hydrogen deuterium exchange-mass spectrometric analysis (HDX-MS) to study conformational flexibility of these fragment immunogens. These studies revealed that all the three immunogens show reduced conformational flexibility compared to ODEC. 5-7 protons remain protected up to 2 hours whereas for ODEC, exchange completes at 20 minutes. This reduced flexibility correlates with 6-20 fold tighter VRC01 binding relative to ODEC. In rabbit immunizations, all three constructs elicit significant gp120 titers as early as week 6 in the absence of any gp120 boost whereas ODEC shows significant gp120 titers only after two gp120 boosts. Week 24 sera elicited after immunization with ODECΔBS, ODECConsensus and CycV4OD boosted with gp120 show neutralization of multiple Tier 1 viruses from subtype B and C, whereas corresponding ODEC immunized animals failed to show a neutralizing response. This study demonstrates that reduced conformational flexibility correlates with better antigenicity and an improved immunogenicity profile for these fragment immunogens. Also we have used HDX-MS studies to one of the stem based HA fragment immunogen pH1HA10-foldon described previously (Mallajosyula et al, 2014) to do peptide finger printing and find regions of protein showing increased protection to hydrogen deuterium exchange and thus derive some structural insights about this trimeric fragment immunogen. Peptide mapping experiments show that the HA stem fragment peptides are exchanging rapidly with more than 90% exchange completing by 30 s for most of the peptides. The well folded foldon trimerization domain peptide shows a very slow exchange profile. A few of the HA peptides exchange slowly with 1-2 protons exchanging after 30 s. Fast exchange seen for this fragment immunogen may be due to truncation of the stem region leading to greater solvent accessibility of the trimer interface.
36

"Avaliação do gene estrutural da proteína de ligação à lectina (MBL) e sua relação com a transmissão materno-fetal do HIV" / Evaluation of the structural lectin binding protein (MBL) gene and its relationship with maternal-to-child HIV transmission

Chagas, Kélem de Nardi 17 August 2005 (has links)
Avaliou-se a expressão do gene mbl2 em 79 crianças e suas mães HIV positivas com o objetivo de avaliar a sua influência na transmissão vertical. Os pacientes divididos em dois grupos: crianças HIV positivas e suas mães (n=18) e crianças HIV negativas e suas mães (n=61) foram avaliados pelo CH50 e AP50 (ensaios hemolíticos), dosagem e avaliação funcional da MBL, ativação da cascata terminal do complemento (ELISA) e o gene mbl2 (PCR). Os resultados não mostraram diferença significante entre os níveis séricos, atividade funcional e o gene da MBL entre os grupos, excluindo a sua influência sobre a transmissão materno-fetal do HIV / It was evaluated the mbl2 gene expression in 79 children and their HIV positive mothers with the aim to evaluate its influence on mother-to-child HIV. The patients were divided in two groups: HIV positive children and their mothers (n=18) and HIV negative children and their mothers (n=61) were evaluated by CH50 and AP50 (hemolytic assays); levels and functional MBL and terminal complement cascade (ELISA) and mbl2 gene (PCR). The results didn't show significant difference amons serum levels, functional activities and MBL gene between the groups, excluding the influence in the mother-to child HIV transmission.
37

"Avaliação do gene estrutural da proteína de ligação à lectina (MBL) e sua relação com a transmissão materno-fetal do HIV" / Evaluation of the structural lectin binding protein (MBL) gene and its relationship with maternal-to-child HIV transmission

Kélem de Nardi Chagas 17 August 2005 (has links)
Avaliou-se a expressão do gene mbl2 em 79 crianças e suas mães HIV positivas com o objetivo de avaliar a sua influência na transmissão vertical. Os pacientes divididos em dois grupos: crianças HIV positivas e suas mães (n=18) e crianças HIV negativas e suas mães (n=61) foram avaliados pelo CH50 e AP50 (ensaios hemolíticos), dosagem e avaliação funcional da MBL, ativação da cascata terminal do complemento (ELISA) e o gene mbl2 (PCR). Os resultados não mostraram diferença significante entre os níveis séricos, atividade funcional e o gene da MBL entre os grupos, excluindo a sua influência sobre a transmissão materno-fetal do HIV / It was evaluated the mbl2 gene expression in 79 children and their HIV positive mothers with the aim to evaluate its influence on mother-to-child HIV. The patients were divided in two groups: HIV positive children and their mothers (n=18) and HIV negative children and their mothers (n=61) were evaluated by CH50 and AP50 (hemolytic assays); levels and functional MBL and terminal complement cascade (ELISA) and mbl2 gene (PCR). The results didn't show significant difference amons serum levels, functional activities and MBL gene between the groups, excluding the influence in the mother-to child HIV transmission.
38

Protein Engineering and Stabilization of HIV-1 Envelope Glycoprotein

Kesavardana, Sannula January 2014 (has links) (PDF)
A number of viral diseases such as Hepatitis B, small pox, measles, rubella and polio have effective vaccines to control or eradicate them. HIV-1 is a lentivirus which infects human immune cells and leads to the disease called AIDS (Acquired Immuno Deficiency Syndrome). Despite much effort since the three decades of its discovery, there is no effective vaccine against HIV-1. The envelope glycoprotein of HIV-1 is the most accessible protein on the virion surface and is essential for HIV-1 infection. Thus, this protein is the primary target for HIV-1 vaccine design. However, HIV-1 has acquired numerous immune evasive mechanisms to escape from the human immune system. Various factors such as high variability of the envelope sequence, presence of immune dominant variable loop regions, extensive glycosylation which masks conserved epitopes on the envelope, weak non-covalent interactions between gp120 and gp41 subunits of the envelope and the metastable nature of the envelope hinder the development of an effective vaccine against HIV-1. Various approaches have been carried out to design immunogens based on the envelope glycoprotein but so far none of these have succeeded in elicitation of a broad neutralizing antibody response. In chapter 1, brief descriptions of the HIV-1 epidemic, structural and genomic organization of HIV-1 along with the difficulties faced and progress in the development of an HIV-1 vaccine are described. HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers. The gp41 subunit in the native, pre-fusion trimeric Env exists in a metastable conformation and attains a stable post-fusion six helix bundle (6HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives fusion of viral and cellular membranes. The metastable nature of gp41 drives the equilibrium towards the post-fusion conformation which favours shedding of gp120 and formation of the gp41 six helix bundle remnants from the Env trimer. These dissociated products display non-neutralizing epitopes to the immune system to drive non-neutralizing antibody responses. Design and purification of Env glycoprotein in its native trimeric form is challenging due to the instability of the functional HIV-1 native Env trimer. In chapter 2, we describe our attempts to stabilize native Env trimers by incorporation of mutations at the NHR:CHR interface that disrupt the post-fusion 6HB of gp41. The mutations V570D and I573D stabilize native JRFL Env and occlude non-neutralizing epitopes to a greater extent than the previously identified I559P mutation that it is at the interface of the NHR trimers in the 6HB. The mutations prevent sCD4 induced gp120 shedding and 6HB formation. The data suggest that positions 570 and 573 are surface proximal in the native Env. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the post fusion 6HB conformation. These mutations should enhance the exposure of native Env forms to the immune system and therefore can be used to stabilize Env in a DNA vaccine format. In previous studies, a disulfide bond was engineered between gp120 and gp41 of Env to stabilize the interactions between them (SOS gp140). An I559P mutation was also introduced to stabilize the native gp41 conformation in the context of disulfide engineered Env (SOSIP gp140). The purified, soluble SOSIP gp140 immunogens were trimeric and cleaved properly. However, these immunogens failed to elicit broad neutralizing responses. The SOSIP gp140 immunogens appear to be good conformational mimics of the native trimeric Env. Thus, it is important to understand the details of the conformation and antigenic nature of SOSIP Env to further assist the design of Env immunogens in a native-like conformation. In chapter 3, we expressed JRFL-SOSIP Env on the cell surface and probed with various gp120 and gp41 specific antibodies to investigate whether this Env protein mimics the native like Env conformation. We show that introduction of a disulfide bond between gp120 and gp41 perturbs the native Env conformation, though this effect is partially alleviated by furin expression. The introduction of the V570D mutation instead of the I559P mutation partially restored the native like conformation of disulfide engineered Env. Proper cleavage of the Env to gp120 and gp41 is essential for the formation of native Env conformation. Uncleaved Env attains non-native forms and binds to non-neutralizing antibodies. To overcome inefficient cleavage problems, we co-expressed gp120 and gp41 genes on separate plasmids in mammalian cells and monitored the formation of native like Env complexes on the cell surface. We observed a fraction of native-like Env complexes on the cell surface when gp120 and gp41 with the V570D mutation are co¬expressed. We also describe the expression of Env with a self-cleavable 2A peptide between gp120 and gp41-V570D. We conclude that co-expression of gp120 and gp41 to form native like Env complexes is possible. HIV-1 Env trimeric immunogens are believed to be better immunogens than monomeric gp120. The trimeric Env immunogens designed so far, elicited marginally better neutralizing antibody response than monomeric gp120. However, these immunogens failed to elicit antibodies which could neutralize multiple primary HIV-1 isolates. Thus, it is possible that these immunogens have failed to mimic the native Env conformation. Cryo-EM and crystal structures of Env suggested that three gp120 monomers are held together at the apex of the Env trimer and the V1V2 regions of each gp120 monomer contribute to this trimeric interface. It was also shown that two broadly neutralizing antibodies (PG9 and PG16) bind to quaternary epitopes formed by V1V2 regions. Based on these observations, we hypothesized that insertion of heterologous trimerization domains into V1V2 loops might help in the formation of native like gp120 trimers. In chapter 4, two different trimerization domains (6-helix bundle and foldon trimerization domains) were inserted at the V1 loop of gp120 and C1 and C5 regions of gp120 were deleted to reduce the conformational flexibility of gp120. The resulting constructs were not trimeric and lost binding to trimer specific antibodies, PG9 and PG16. Due to their large distances between N and C-termini, these trimerization domains might have altered the local conformation of V1V2 regions and destabilized gp120 trimer formation. Interestingly, introduction of a trimerization domain (hCMP) at the C-terminus of C1 and C5 deleted gp120 (gp120-hCMP-21), led to the formation of native-like trimers which bound to both PG9 and PG16 antibodies. These results suggest that it may be difficult to trimerize gp120 by insertion of heterologous trimerization domains into the V1V2 loop and that conformational integrity of the V1V2 region is essential for the formation of trimeric gp120 interface. V1V2 regions of gp120 form quaternary epitopes on the Env trimer and are target for several broadly neutralizing antibodies. Moreover, these regions are important for the formation of the gp120 trimeric interface in the Env. In chapter 4, we show that insertion of heterologous trimerization domains at the V1 loop failed to form native like gp120 trimers. To further investigate this issue, in chapter 5, we made cyclic permutants of the gp120 molecule to create new N and C-termini at the V1 or V2 loop regions. This allowed the insertion of heterologous trimerization domains at these loop regions without affecting the folding and stability of gp120. The hCMP trimerization domain was introduced at the N-terminus of cyclically permuted gp120 (V1cyc and V2cyc). The resulting cyclic permutants were trimeric and retained binding to several broadly neutralizing antibodies. These cyclic permutants showed 10-20 fold increased binding to quaternary epitope specific neutralizing antibodies PG9 and PGT 145. CD4 binding site directed broadly neutralizing antibodies b12 and VRC01 also showed increased affinities to these cyclic permutants. Immunization of guinea pigs with cyclic permutants elicited broad neutralizing antibody response to Tier-1 and Tier-2 HIV-1 isolates with substantially higher titers than the corresponding monomeric gp120 immunogens. The data demonstrate that cyclic permutation of gp120 did not affect the structural and functional properties of gp120. It is possible to elicit broadly neutralizing sera against HIV-1 using cyclically permuted gp120 trimers in small animals. Among several proposed cryo-EM tomography structures of trimeric Env, some suggested that the V1V2 loop regions of gp120 are located close to the trimer interface while some other structures suggested that the V1V2 loop regions of gp120 are located far from the trimer axis. The present study supports Env models in which the V1V2 loops are proximal to the trimer interface. This has recently been confirmed in high resolution cryo-EM and crystal structures of HIV-1 gp140 derivatives. HIV-1 Env subunit gp120 has 50% of its molecular mass comprised of glycans which shield Env from immune recognition. Env has approximately 25 glycosylation sites of which ~4 are located in the inner domain, ~7-8 in the V1/V2 and V3 loops and the rest in the outer domain (OD). Earlier reports suggested that the glycans are indispensable for proper folding of Env and a certain level of glycan coverage is essential for maintaining infectivity of the virion. In chapter 6, we investigated the effect of removal of glycans from core gp120 on the infectivity of the HIV-1 and on the recognition of Env by various broadly neutralizing antibodies (bNAbs). We mutated the glycosylation sites in core gp120 to the second most frequent amino acids based on multiple sequence alignment. Pseudoviral infectivity assays and mammalian cell surface display experiments show that in the context of gp160, all core gp120 glycans are dispensable for viral infectivity and for recognition of bNAbs. We also show that deglycosylated molecules can serve as a starting point to re-introduce epitopes for specific glycan dependent bNAbs. Several of the constructs will also be useful for epitope mapping and Env structural characterization. Glycosylation of Env is known to inhibit binding to germline precursors of known bNAbs. In this study we show that recognition of VRC01 germline-bNAb increases substantially with the progressive loss of glycans from JRFL pseudoviruses. This work has so far resulted in the following publications (mentioned in next page).
39

Computational Analyses of Protein Structure and Immunogen Design

Patel, Siddharth January 2015 (has links) (PDF)
The sequence of a polypeptide chain determines its structure which in turns determines its function. A protein is stabilized by multiple forces; hydrophobic interaction, electrostatic interactions and hydrogen bond formation between residues. While the above forces are non-covalent in nature the protein structure is also stabilized by disulfide bonds. Structural features such as naturally occurring cavities in proteins also affect its stability. Studying factors which affect a protein’s structural stability helps us understand complex sequence-structure-function relationships, the knowledge of which can be applied in areas such as protein engineering. The work presented in this thesis deals with various and diverse aspects of protein structure. Chapter 1 gives an overall introduction on the topics studied in this thesis. Chapter 2 focuses on a unique, non-regular, structural feature of proteins, viz. protein cavities. Cavities directly affect the packing density of the protein. It has been shown that large to small cavity creating mutations destabilize the protein with the extent of destabilization being proportional to the size of cavity created. On the other hand, small to large cavity filling mutations have been shown to increase protein stability. Tools which analyze protein cavities are thus important in studies pertaining to protein structure and stability. The chapter presents two methods which detect and calculate cavity volumes in proteins. The first method, DEPTH 2.0, focuses on accurate detection and volume calculation of cavities. The second method, ROBUSTCAVITIES, focuses on detection of biologically relevant cavities in proteins. We then study another aspect of protein structure – the disulfide bond. Disulfide bonds confer stability to the protein by decreasing the entropy of the unfolded state. Previous studies which attempted to engineer disulfides in proteins have shown mixed results. Previously, disulfide bonds in individual secondary structures were characterized. Analysis of disulfides in α-helices and antiparallel β-strands yielded important common features of such bonds. In Chapter 3 we present a review of these studies. We then use MODIP; a tool that identifies amino acid pairs which when mutated to cysteines will most likely form a disulfide bond, to analyze disulfide bonds in parallel β-strands. A direct way to analyze sequence-structure relationships is via mutating individual residues, evaluating the effect on stability and activity of the protein and inferring its effect on protein structure. Saturation mutagenesis libraries, where all possible mutations are made at every position in the protein contain a huge amount of information pertaining to the effect of mutations on structure. Making such libraries and screening them has been an extremely resource intensive process. We combine a fast inverse PCR based method to rapidly generate saturation mutagenesis libraries with the power of deep sequencing to derive phenotypes of individual mutants without any large scale screening. In Chapter 4 we present an Illumina data analysis pipeline which analyzes sequencing data from a saturation mutagenesis library, and derives individual mutant phenotypes with high confidence. In Chapter 5 we apply the insights derived from structure-function studies and apply it to the problem of protein engineering, specifically immunogen design. The Human Immunodeficiency Virus adopts various strategies to evade the host immune system. Being able to display the conserved epitopes which elicit a broadly neutralizing response is the first step towards an effective vaccine. Grafting such an epitope onto a foreign scaffold will mitigate some of the key HIV defenses. We develop a computational protocol which grafts the broadly neutralizing antibody b12 epitope on scaffolds selected from the PDB. This chapter also describes the only experimental work presented in this thesis viz. cloning, expressing and screening the epitope-scaffolds using Yeast Surface Display. Our epitope-scaffolds show modest but specific binding. In a bid to improve binding, we make random mutant libraries of the epitope-scaffolds and screen them for better binders using FACS. This work is on-going and we aim to purify our epitope-scaffolds, characterize them biophysically and eventually test their efficacy as immunogens.
40

Characterization of Envelope-Specific Antibody Response Elicited by HIV-1 Vaccines: A Dissertation

Chen, Yuxin 06 January 2015 (has links)
Despite 30 years of intensive research,an effective human immunodeficiency virus (HIV) vaccine still remains elusive. The desirable immune response capable of providing protection against HIV acquisition is still not clear. The accumulating evidence learned from a recent vaccine efficacy correlate study not only confirmed the importance of antibody responses, but also highlighted potential protective functions of antibodies with a broad repertoire of HIV-1 epitope specificities and a wide range of different antiviral mechanisms. This necessitates a deep understanding of the complexity and diversity of antibody responses elicited by HIV-1 vaccines. My dissertation characterizes antibody response profiles of HIV-1 Env antibodies elicited by several novel immunogens or different immunization regimens, in terms of magnitude, persistence, epitope specificity, binding affinity, and biological function. First, to overcome the challenge of studying polyclonal sera without established assays, we expanded a novel platform to isolate Env-specific Rabbit mAbs (RmAb) elicited by DNA prime-protein boost immunization. These RmAbs revealed diverse epitope specificity and cross-reactivity against multiple gp120 antigens from more than one subtype, and several had potent and broad neutralizing activities against sensitive Tier 1 viruses. Further, structural analysis of two V3 mAbs demonstrated that a slight shift of the V3 epitope might have a dramatic impact on their neutralization activity. All of these observations provide a useful tool to study the induction of a desired type of antibody by different immunogens or different immunization regimens. Since heavily glycosylated HIV Env protein is a critical component of an HIV vaccine, we wanted to determine the impact of the HIV Env-associated glycan shield on antibody responses. We were able to produce Env proteins with a selective and homogeneous pattern of N-glycosylation using a glycoengineered yeast cell line. Antigenicity of these novel Env proteins was examined by well-characterized human mAbs. Immunogenicity studies showed that they were immunogenic and elicited gp120- specific antibody responses. More significantly, sera elicited by glycan-modified gp120 protein immunogens revealed better neutralizing activities and increased diversity of epitopes compared to sera elicited by traditional gp120 produced in Chinese Hamster Ovary (CHO) cells. Further, we examined the impact of the delivery order of DNA and protein immunization on antibody responses. We found that DNA prime-protein boost induced a comparable level of Env-specific binding Abs at the peak immunogenicity point to codelivery of DNA. However, antibody responses from DNA prime-protein boost had high avidity and diverse specificities, which improved potency and breadth of neutralizing Abs against Tier 1 viruses. Our data indicate that DNA vaccine priming of the immune system is essential for generation of high-quality antibodies. Additionally, we determined the relative immunogenicity of gp120 and gp160 Env in the context of DNA prime-protein boost vaccination to induce high-quality antibody responses. Immunized sera from gp120 DNA primed animals, but not those primed with gp160 DNA, presented with distinct antibody repertoire specificities, a high magnitude of CD4 binding site-directed binding capabilities as well as neutralizing activities. We confirmed the importance of using the gp120 Env form at the DNA priming phase, which directly determined the quality of antibody response.

Page generated in 0.0719 seconds