Spelling suggestions: "subject:"gpu""
271 |
Interactive MesostructuresNykl, Scott L. January 2013 (has links)
No description available.
|
272 |
Acceleration of the Weather Research & Forecasting (WRF) Model using OpenACC and Case Study of the August 2012 Great Arctic CycloneHaines, Wesley Adam 04 September 2013 (has links)
No description available.
|
273 |
Improving Performance and Energy Efficiency of Heterogeneous Systems with rCUDAPrades Gasulla, Javier 14 June 2021 (has links)
Tesis por compendio / [ES] En la última década la utilización de la GPGPU (General Purpose computing in Graphics Processing Units; Computación de Propósito General en Unidades de Procesamiento Gráfico) se ha vuelto tremendamente popular en los centros de datos de todo el mundo. Las GPUs (Graphics Processing Units; Unidades de Procesamiento Gráfico) se han establecido como elementos aceleradores de cómputo que son usados junto a las CPUs formando sistemas heterogéneos. La naturaleza masivamente paralela de las GPUs, destinadas tradicionalmente al cómputo de gráficos, permite realizar operaciones numéricas con matrices de datos a gran velocidad debido al gran número de núcleos que integran y al gran ancho de banda de acceso a memoria que poseen. En consecuencia, aplicaciones de todo tipo de campos, tales como química, física, ingeniería, inteligencia artificial, ciencia de materiales, etc. que presentan este tipo de patrones de cómputo se ven beneficiadas, reduciendo drásticamente su tiempo de ejecución.
En general, el uso de la aceleración del cómputo en GPUs ha significado un paso adelante y una revolución. Sin embargo, no está exento de problemas, tales como problemas de eficiencia energética, baja utilización de las GPUs, altos costes de adquisición y mantenimiento, etc.
En esta tesis pretendemos analizar las principales carencias que presentan estos sistemas heterogéneos y proponer soluciones basadas en el uso de la virtualización remota de GPUs. Para ello hemos utilizado la herramienta rCUDA, desarrollada en la Universitat Politècnica de València, ya que multitud de publicaciones la avalan como el framework de virtualización remota de GPUs más avanzado de la actualidad.
Los resutados obtenidos en esta tesis muestran que el uso de rCUDA en entornos de Cloud Computing incrementa el grado de libertad del sistema, ya que permite crear instancias virtuales de las GPUs físicas totalmente a medida de las necesidades de cada una de las máquinas virtuales. En entornos HPC (High Performance Computing; Computación de Altas Prestaciones), rCUDA también proporciona un mayor grado de flexibilidad de uso de las GPUs de todo el clúster de cómputo, ya que permite desacoplar totalmente la parte CPU de la parte GPU de las aplicaciones. Además, las GPUs pueden estar en cualquier nodo del clúster, independientemente del nodo en el que se está ejecutando la parte CPU de la aplicación. En general, tanto para Cloud Computing como en el caso de HPC, este mayor grado de flexibilidad se traduce en un aumento hasta 2x de la productividad de todo el sistema al mismo tiempo que se reduce el consumo energético en un 15%.
Finalmente, también hemos desarrollado un mecanismo de migración de trabajos de la parte GPU de las aplicaciones que ha sido integrado dentro del framework rCUDA. Este mecanismo de migración ha sido evaluado y los resultados muestran claramente que, a cambio de una pequeña sobrecarga, alrededor de 400 milisegundos, en el tiempo de ejecución de las aplicaciones, es una potente herramienta con la que, de nuevo, aumentar la productividad y reducir el gasto energético del sistema.
En resumen, en esta tesis se analizan los principales problemas derivados del uso de las GPUs como aceleradores de cómputo, tanto en entornos HPC como de Cloud Computing, y se demuestra cómo a través del uso del framework rCUDA, estos problemas pueden solucionarse. Además se desarrolla un potente mecanismo de migración de trabajos GPU, que integrado dentro del framework rCUDA, se convierte en una herramienta clave para los futuros planificadores de trabajos en clusters heterogéneos. / [CA] En l'última dècada la utilització de la GPGPU(General Purpose computing in Graphics Processing Units; Computació de Propòsit General en Unitats de Processament Gràfic) s'ha tornat extremadament popular en els centres de dades de tot el món. Les GPUs (Graphics Processing Units; Unitats de Processament Gràfic) s'han establert com a elements acceleradors de còmput que s'utilitzen al costat de les CPUs formant sistemes heterogenis. La naturalesa massivament paral·lela de les GPUs, destinades tradicionalment al còmput de gràfics, permet realitzar operacions numèriques amb matrius de dades a gran velocitat degut al gran nombre de nuclis que integren i al gran ample de banda d'accés a memòria que posseeixen. En conseqüència, les aplicacions de tot tipus de camps, com ara química, física, enginyeria, intel·ligència artificial, ciència de materials, etc. que presenten aquest tipus de patrons de còmput es veuen beneficiades reduint dràsticament el seu temps d'execució.
En general, l'ús de l'acceleració del còmput en GPUs ha significat un pas endavant i una revolució, però no està exempt de problemes, com ara poden ser problemes d'eficiència energètica, baixa utilització de les GPUs, alts costos d'adquisició i manteniment, etc.
En aquesta tesi pretenem analitzar les principals mancances que presenten aquests sistemes heterogenis i proposar solucions basades en l'ús de la virtualització remota de GPUs. Per a això hem utilitzat l'eina rCUDA, desenvolupada a la Universitat Politècnica de València, ja que multitud de publicacions l'avalen com el framework de virtualització remota de GPUs més avançat de l'actualitat.
Els resultats obtinguts en aquesta tesi mostren que l'ús de rCUDA en entorns de Cloud Computing incrementa el grau de llibertat del sistema, ja que permet crear instàncies virtuals de les GPUs físiques totalment a mida de les necessitats de cadascuna de les màquines virtuals. En entorns HPC (High Performance Computing; Computació d'Altes Prestacions), rCUDA també proporciona un major grau de flexibilitat en l'ús de les GPUs de tot el clúster de còmput, ja que permet desacoblar totalment la part CPU de la part GPU de les aplicacions. A més, les GPUs poden estar en qualsevol node del clúster, sense importar el node en el qual s'està executant la part CPU de l'aplicació. En general, tant per a Cloud Computing com en el cas del HPC, aquest major grau de flexibilitat es tradueix en un augment fins 2x de la productivitat de tot el sistema al mateix temps que es redueix el consum energètic en aproximadament un 15%.
Finalment, també hem desenvolupat un mecanisme de migració de treballs de la part GPU de les aplicacions que ha estat integrat dins del framework rCUDA. Aquest mecanisme de migració ha estat avaluat i els resultats mostren clarament que, a canvi d'una petita sobrecàrrega, al voltant de 400 mil·lisegons, en el temps d'execució de les aplicacions, és una potent eina amb la qual, de nou, augmentar la productivitat i reduir la despesa energètica de sistema.
En resum, en aquesta tesi s'analitzen els principals problemes derivats de l'ús de les GPUs com acceleradors de còmput, tant en entorns HPC com de Cloud Computing, i es demostra com a través de l'ús del framework rCUDA, aquests problemes poden solucionar-se. A més es desenvolupa un potent mecanisme de migració de treballs GPU, que integrat dins del framework rCUDA, esdevé una eina clau per als futurs planificadors de treballs en clústers heterogenis. / [EN] In the last decade the use of GPGPU (General Purpose computing in Graphics Processing Units) has become extremely popular in data centers around the world. GPUs (Graphics Processing Units) have been established as computational accelerators that are used alongside CPUs to form heterogeneous systems. The massively parallel nature of GPUs, traditionally intended for graphics computing, allows to perform numerical operations with data arrays at high speed. This is achieved thanks to the large number of cores GPUs integrate and the large bandwidth of memory access. Consequently, applications of all kinds of fields, such as chemistry, physics, engineering, artificial intelligence, materials science, and so on, presenting this type of computational patterns are benefited by drastically reducing their execution time.
In general, the use of computing acceleration provided by GPUs has meant a step forward and a revolution, but it is not without problems, such as energy efficiency problems, low utilization of GPUs, high acquisition and maintenance costs, etc.
In this PhD thesis we aim to analyze the main shortcomings of these heterogeneous systems and propose solutions based on the use of remote GPU virtualization. To that end, we have used the rCUDA middleware, developed at Universitat Politècnica de València. Many publications support rCUDA as the most advanced remote GPU virtualization framework nowadays.
The results obtained in this PhD thesis show that the use of rCUDA in Cloud Computing environments increases the degree of freedom of the system, as it allows to create virtual instances of the physical GPUs fully tailored to the needs of each of the virtual machines. In HPC (High Performance Computing) environments, rCUDA also provides a greater degree of flexibility in the use of GPUs throughout the computing cluster, as it allows the CPU part to be completely decoupled from the GPU part of the applications. In addition, GPUs can be on any node in the cluster, regardless of the node on which the CPU part of the application is running. In general, both for Cloud Computing and in the case of HPC, this greater degree of flexibility translates into an up to 2x increase in system-wide throughput while reducing energy consumption by approximately 15%.
Finally, we have also developed a job migration mechanism for the GPU part of applications that has been integrated within the rCUDA middleware. This migration mechanism has been evaluated and the results clearly show that, in exchange for a small overhead of about 400 milliseconds in the execution time of the applications, it is a powerful tool with which, again, we can increase productivity and reduce energy foot print of the computing system.
In summary, this PhD thesis analyzes the main problems arising from the use of GPUs as computing accelerators, both in HPC and Cloud Computing environments, and demonstrates how thanks to the use of the rCUDA middleware these problems can be addressed. In addition, a powerful GPU job migration mechanism is being developed, which, integrated within the rCUDA framework, becomes a key tool for future job schedulers in heterogeneous clusters. / This work jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants (20524/PDC/18, 20813/PI/18 and 20988/PI/18) and by the Spanish MEC and European Commission FEDER under grants TIN2015-66972-C5-3-R, TIN2016-78799-P and CTQ2017-87974-R (AEI/FEDER, UE). We also thank NVIDIA for hardware donation under GPU Educational Center 2014-2016 and Research Center 2015-2016. The authors thankfully acknowledge the computer resources at CTE-POWER and the technical support provided by Barcelona Supercomputing Center - Centro Nacional de Supercomputación (RES-BCV-2018-3-0008). Furthermore, researchers from Universitat Politècnica de València are supported by the Generalitat Valenciana under Grant PROMETEO/2017/077. Authors are also grateful for the generous support provided by Mellanox Technologies Inc. Prof. Pradipta Purkayastha, from Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, is acknowledged for kindly providing the initial ligand and DNA structures. / Prades Gasulla, J. (2021). Improving Performance and Energy Efficiency of Heterogeneous Systems with rCUDA [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168081 / Compendio
|
274 |
Parallélisation de simulations interactives de champs ultrasonores pour le contrôle non destructif / Parallelization of ultrasonic field simulations for non destructive testingLambert, Jason 03 July 2015 (has links)
La simulation est de plus en plus utilisée dans le domaine industriel du Contrôle Non Destructif. Elle est employée tout au long du processus de contrôle, que ce soit pour en accélérer la mise au point ou en comprendre les résultats. Les travaux menés au cours de cette thèse présentent une méthode de calcul rapide de champ ultrasonore rayonné par un capteur multi-éléments dans une pièce isotrope, permettant un usage interactif des simulations. Afin de tirer parti des architectures parallèles communément disponibles, un modèle régulier (qui limite au maximum les branchements divergents) dérivé du modèle générique présent dans la plateforme logicielle CIVA a été mis au point. Une première implémentation de référence a permis de le valider par rapport aux résultats CIVA et d'analyser son comportement en termes de performances. Le code a ensuite été porté et optimisé sur trois classes d'architectures parallèles aujourd'hui disponibles dans les stations de calcul : le processeur généraliste central (GPP), le coprocesseur manycore (Intel MIC) et la carte graphique (nVidia GPU). Concernant le processeur généraliste et le coprocesseur manycore, l'algorithme a été réorganisé et le code implémenté afin de tirer parti des deux niveaux de parallélisme disponibles, le multithreading et les instructions vectorielles. Sur la carte graphique, les différentes étapes de simulation de champ ont été découpées en une série de noyaux CUDA. Enfin, des bibliothèques de calculs spécifiques à ces architectures, Intel MKL et nVidia cuFFT, ont été utilisées pour effectuer les opérations de Transformées de Fourier Rapides. Les performances et la bonne adéquation des codes produits ont été analysées en détail pour chaque architecture. Dans plusieurs cas, sur des configurations de contrôle réalistes, des performances autorisant l'interactivité ont été atteintes. Des perspectives pour traiter des configurations plus complexes sont dressées. Enfin la problématique de l'industrialisation de ce type de code dans la plateforme logicielle CIVA est étudiée. / The Non Destructive Testing field increasingly uses simulation.It is used at every step of the whole control process of an industrial part, from speeding up control development to helping experts understand results. During this thesis, a simulation tool dedicated to the fast computation of an ultrasonic field radiated by a phase array probe in an isotropic specimen has been developped. Its performance enables an interactive usage. To benefit from the commonly available parallel architectures, a regular model (aimed at removing divergent branching) derived from the generic CIVA model has been developped. First, a reference implementation was developped to validate this model against CIVA results, and to analyze its performance behaviour before optimization. The resulting code has been optimized for three kinds of parallel architectures commonly available in workstations: general purpose processors (GPP), manycore coprocessors (Intel MIC) and graphics processing units (nVidia GPU). On the GPP and the MIC, the algorithm was reorganized and implemented to benefit from both parallelism levels, multhreading and vector instructions. On the GPU, the multiple steps of field computing have been divided in multiple successive CUDA kernels.Moreover, libraries dedicated to each architecture were used to speedup Fast Fourier Transforms, Intel MKL on GPP and MIC and nVidia cuFFT on GPU. Performance and hardware adequation of the produced algorithms were thoroughly studied for each architecture. On multiple realistic control configurations, interactive performance was reached. Perspectives to adress more complex configurations were drawn. Finally, the integration and the industrialization of this code in the commercial NDT plateform CIVA is discussed.
|
275 |
Simulações Financeiras em GPU / Finance and Stochastic Simulation on GPUSouza, Thársis Tuani Pinto 26 April 2013 (has links)
É muito comum modelar problemas em finanças com processos estocásticos, dada a incerteza de suas variáveis de análise. Além disso, problemas reais nesse domínio são, em geral, de grande custo computacional, o que sugere a utilização de plataformas de alto desempenho (HPC) em sua implementação. As novas gerações de arquitetura de hardware gráfico (GPU) possibilitam a programação de propósito geral enquanto mantêm alta banda de memória e grande poder computacional. Assim, esse tipo de arquitetura vem se mostrando como uma excelente alternativa em HPC. Com isso, a proposta principal desse trabalho é estudar o ferramental matemático e computacional necessário para modelagem estocástica em finanças com a utilização de GPUs como plataforma de aceleração. Para isso, apresentamos a GPU como uma plataforma de computação de propósito geral. Em seguida, analisamos uma variedade de geradores de números aleatórios, tanto em arquitetura sequencial quanto paralela. Além disso, apresentamos os conceitos fundamentais de Cálculo Estocástico e de método de Monte Carlo para simulação estocástica em finanças. Ao final, apresentamos dois estudos de casos de problemas em finanças: \"Stops Ótimos\" e \"Cálculo de Risco de Mercado\". No primeiro caso, resolvemos o problema de otimização de obtenção do ganho ótimo em uma estratégia de negociação de ações de \"Stop Gain\". A solução proposta é escalável e de paralelização inerente em GPU. Para o segundo caso, propomos um algoritmo paralelo para cálculo de risco de mercado, bem como técnicas para melhorar a solução obtida. Nos nossos experimentos, houve uma melhora de 4 vezes na qualidade da simulação estocástica e uma aceleração de mais de 50 vezes. / Given the uncertainty of their variables, it is common to model financial problems with stochastic processes. Furthermore, real problems in this area have a high computational cost. This suggests the use of High Performance Computing (HPC) to handle them. New generations of graphics hardware (GPU) enable general purpose computing while maintaining high memory bandwidth and large computing power. Therefore, this type of architecture is an excellent alternative in HPC and comptutational finance. The main purpose of this work is to study the computational and mathematical tools needed for stochastic modeling in finance using GPUs. We present GPUs as a platform for general purpose computing. We then analyze a variety of random number generators, both in sequential and parallel architectures, and introduce the fundamental mathematical tools for Stochastic Calculus and Monte Carlo simulation. With this background, we present two case studies in finance: ``Optimal Trading Stops\'\' and ``Market Risk Management\'\'. In the first case, we solve the problem of obtaining the optimal gain on a stock trading strategy of ``Stop Gain\'\'. The proposed solution is scalable and with inherent parallelism on GPU. For the second case, we propose a parallel algorithm to compute market risk, as well as techniques for improving the quality of the solutions. In our experiments, there was a 4 times improvement in the quality of stochastic simulation and an acceleration of over 50 times.
|
276 |
Towards fast and certified multiple-precision librairies / Vers des bibliothèques multi-précision certifiées et performantesPopescu, Valentina 06 July 2017 (has links)
De nombreux problèmes de calcul numérique demandent parfois à effectuer des calculs très précis. L'étude desystèmes dynamiques chaotiques fournit des exemples très connus: la stabilité du système solaire ou l’itération à longterme de l'attracteur de Lorenz qui constitue un des premiers modèles de prédiction de l'évolution météorologique. Ons'intéresse aussi aux problèmes d'optimisation semi-définie positive mal-posés qui apparaissent dans la chimie oul'informatique quantique.Pour tenter de résoudre ces problèmes avec des ordinateurs, chaque opération arithmétique de base (addition,multiplication, division, racine carrée) demande une plus grande précision que celle offerte par les systèmes usuels(binary32 and binary64). Il existe des logiciels «multi-précision» qui permettent de manipuler des nombres avec unetrès grande précision, mais leur généralité (ils sont capables de manipuler des nombres de millions de chiffres) empêched’atteindre de hautes performances. L’objectif majeur de cette thèse a été de développer un nouveau logiciel à la foissuffisamment précis, rapide et sûr : on calcule avec quelques dizaines de chiffres (quelques centaines de bits) deprécision, sur des architectures hautement parallèles comme les processeurs graphiques et on démontre des bornesd'erreur afin d'être capables d’obtenir des résultats certains. / Many numerical problems require some very accurate computations. Examples can be found in the field ofdynamical systems, like the long-term stability of the solar system or the long-term iteration of the Lorenz attractor thatis one of the first models used for meteorological predictions. We are also interested in ill-posed semi-definite positiveoptimization problems that appear in quantum chemistry or quantum information.In order to tackle these problems using computers, every basic arithmetic operation (addition, multiplication,division, square root) requires more precision than the ones offered by common processors (binary32 and binary64).There exist multiple-precision libraries that allow the manipulation of very high precision numbers, but their generality(they are able to handle numbers with millions of digits) is quite a heavy alternative when high performance is needed.The major objective of this thesis was to design and develop a new arithmetic library that offers sufficient precision, isfast and also certified. We offer accuracy up to a few tens of digits (a few hundred bits) on both common CPU processorsand on highly parallel architectures, such as graphical cards (GPUs). We ensure the results obtained by providing thealgorithms with correctness and error bound proofs.
|
277 |
Simulações Financeiras em GPU / Finance and Stochastic Simulation on GPUThársis Tuani Pinto Souza 26 April 2013 (has links)
É muito comum modelar problemas em finanças com processos estocásticos, dada a incerteza de suas variáveis de análise. Além disso, problemas reais nesse domínio são, em geral, de grande custo computacional, o que sugere a utilização de plataformas de alto desempenho (HPC) em sua implementação. As novas gerações de arquitetura de hardware gráfico (GPU) possibilitam a programação de propósito geral enquanto mantêm alta banda de memória e grande poder computacional. Assim, esse tipo de arquitetura vem se mostrando como uma excelente alternativa em HPC. Com isso, a proposta principal desse trabalho é estudar o ferramental matemático e computacional necessário para modelagem estocástica em finanças com a utilização de GPUs como plataforma de aceleração. Para isso, apresentamos a GPU como uma plataforma de computação de propósito geral. Em seguida, analisamos uma variedade de geradores de números aleatórios, tanto em arquitetura sequencial quanto paralela. Além disso, apresentamos os conceitos fundamentais de Cálculo Estocástico e de método de Monte Carlo para simulação estocástica em finanças. Ao final, apresentamos dois estudos de casos de problemas em finanças: \"Stops Ótimos\" e \"Cálculo de Risco de Mercado\". No primeiro caso, resolvemos o problema de otimização de obtenção do ganho ótimo em uma estratégia de negociação de ações de \"Stop Gain\". A solução proposta é escalável e de paralelização inerente em GPU. Para o segundo caso, propomos um algoritmo paralelo para cálculo de risco de mercado, bem como técnicas para melhorar a solução obtida. Nos nossos experimentos, houve uma melhora de 4 vezes na qualidade da simulação estocástica e uma aceleração de mais de 50 vezes. / Given the uncertainty of their variables, it is common to model financial problems with stochastic processes. Furthermore, real problems in this area have a high computational cost. This suggests the use of High Performance Computing (HPC) to handle them. New generations of graphics hardware (GPU) enable general purpose computing while maintaining high memory bandwidth and large computing power. Therefore, this type of architecture is an excellent alternative in HPC and comptutational finance. The main purpose of this work is to study the computational and mathematical tools needed for stochastic modeling in finance using GPUs. We present GPUs as a platform for general purpose computing. We then analyze a variety of random number generators, both in sequential and parallel architectures, and introduce the fundamental mathematical tools for Stochastic Calculus and Monte Carlo simulation. With this background, we present two case studies in finance: ``Optimal Trading Stops\'\' and ``Market Risk Management\'\'. In the first case, we solve the problem of obtaining the optimal gain on a stock trading strategy of ``Stop Gain\'\'. The proposed solution is scalable and with inherent parallelism on GPU. For the second case, we propose a parallel algorithm to compute market risk, as well as techniques for improving the quality of the solutions. In our experiments, there was a 4 times improvement in the quality of stochastic simulation and an acceleration of over 50 times.
|
278 |
Développement d’algorithmes d’imagerie et de reconstruction sur architectures à unités de traitements parallèles pour des applications en contrôle non destructif / Development of imaging and reconstructions algorithms on parallel processing architectures for applications in non-destructive testingPedron, Antoine 28 May 2013 (has links)
La problématique de cette thèse se place à l’interface entre le domaine scientifique du contrôle non destructif par ultrasons (CND US) et l’adéquation algorithme architecture. Le CND US comprend un ensemble de techniques utilisées pour examiner un matériau, qu’il soit en production ou maintenance. Afin de détecter d’éventuels défauts, de les positionner et les dimensionner, des méthodes d’imagerie et de reconstruction ont été développées au CEA-LIST, dans la plateforme logicielle CIVA.L’évolution du matériel d’acquisition entraine une augmentation des volumes de données et par conséquent nécessite toujours plus de puissance de calcul pour parvenir à des reconstructions en temps interactif. L’évolution multicoeurs des processeurs généralistes (GPP), ainsi que l’arrivée de nouvelles architectures comme les GPU rendent maintenant possible l’accélération de ces algorithmes.Le but de cette thèse est d’évaluer les possibilités d’accélération de deux algorithmes de reconstruction sur ces architectures. Ces deux algorithmes diffèrent dans leurs possibilités de parallélisation. Pour un premier, la parallélisation sur GPP est relativement immédiate, contrairement à celle sur GPU qui nécessite une utilisation intensive des instructions atomiques. Quant au second, le parallélisme est plus simple à exprimer, mais l’ordonnancement des nids de boucles sur GPP, ainsi que l’ordonnancement des threads et une bonne utilisation de la mémoire partagée des GPU sont nécessaires pour obtenir un fonctionnement efficace. Pour ce faire, OpenMP, CUDA et OpenCL ont été utilisés et comparés. L’intégration de ces prototypes dans la plateforme CIVA a mis en évidence un ensemble de problématiques liées à la maintenance et à la pérennisation de codes sur le long terme. / This thesis work is placed between the scientific domain of ultrasound non-destructive testing and algorithm-architecture adequation. Ultrasound non-destructive testing includes a group of analysis techniques used in science and industry to evaluate the properties of a material, component, or system without causing damage. In order to characterize possible defects, determining their position, size and shape, imaging and reconstruction tools have been developed at CEA-LIST, within the CIVA software platform.Evolution of acquisition sensors implies a continuous growth of datasets and consequently more and more computing power is needed to maintain interactive reconstructions. General purprose processors (GPP) evolving towards parallelism and emerging architectures such as GPU allow large acceleration possibilities than can be applied to these algorithms.The main goal of the thesis is to evaluate the acceleration than can be obtained for two reconstruction algorithms on these architectures. These two algorithms differ in their parallelization scheme. The first one can be properly parallelized on GPP whereas on GPU, an intensive use of atomic instructions is required. Within the second algorithm, parallelism is easier to express, but loop ordering on GPP, as well as thread scheduling and a good use of shared memory on GPU are necessary in order to obtain efficient results. Different API or libraries, such as OpenMP, CUDA and OpenCL are evaluated through chosen benchmarks. An integration of both algorithms in the CIVA software platform is proposed and different issues related to code maintenance and durability are discussed.
|
279 |
Estratégias de paralelismo com GPGPU para otimização do processamento do cálculo do fluxo de carga em sistemas elétricos de potênciaARAÚJO, Igor Meireles de 23 March 2017 (has links)
Submitted by Hellen Luz (hellencrisluz@gmail.com) on 2017-07-04T18:45:28Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_EstrategiasParalelismoGpgpu.pdf: 1964519 bytes, checksum: 90e88c79511a80729d175e52be5bc30b (MD5) / Approved for entry into archive by Irvana Coutinho (irvana@ufpa.br) on 2017-08-18T13:25:09Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_EstrategiasParalelismoGpgpu.pdf: 1964519 bytes, checksum: 90e88c79511a80729d175e52be5bc30b (MD5) / Made available in DSpace on 2017-08-18T13:25:09Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_EstrategiasParalelismoGpgpu.pdf: 1964519 bytes, checksum: 90e88c79511a80729d175e52be5bc30b (MD5)
Previous issue date: 2017-03-23 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O cálculo do fluxo de carga provê informações fundamentais em um sistema elétrico de potência, informações necessárias para que sejam realizados estudos nos sistemas. No entanto, o fluxo de carga só pode ser realizado em estado de regime permanente. Caso o sistema sofra alguma alteração, seja por variação nas cargas ou modificações dos equipamentos de controle, este cálculo é necessário ser refeito. Por essa necessidade, de constantemente ter que realizar o controle no fluxo de carga, começou-se uma busca por otimizar o tempo necessário desta tarefa. Uma das soluções abordadas para isso foi a utilização de computação paralela, a qual começou a ser utilizada a General Purpose Graphics Processing Unit (GPGPU) como uma alternativa de melhor custo benefício para execuções em arquiteturas paralelas, que consiste na utilização de Graphic Processing Units (GPU) não somente para processamento gráfico, mas também para propósitos gerais. Diversos trabalhos têm tirado proveito da utilização de GPGPU nos cálculos do fluxo de carga, contudo, não há um consenso sobre qual estratégia utilizar para paralelizar neste tipo de hardware, ficando a cargo de cada autor o trabalho de desenvolver seu próprio método, dificultando a utilização da arquitetura para a implementação desses cálculos, tanto para fins acadêmicos, quanto para o mercado. Pela falta de um consenso e palas divergências encontradas nos trabalhos, esta dissertação visa analisar as etapas do fluxo de carga, identificando quais estão mais aptas a paralelização em GPGPU com o intuito de realizar múltiplos cálculos do fluxo de carga simultâneos e reduzir o tempo necessário para o processamento, difundindo uma estratégia eficiente para sistemas de larga escala no mercado e no meio acadêmico, facilitando a replicação para trabalhos futuros com utilização de metaheurísticas para otimização de sistemas elétricos de potência. / The load flow calculation provides fundamental information for an electric power system. However, the load flow can only be carried out in the steady state, in the event of a system suffering any change, by variation in the loads or modifications of the control equipment, this calculation is necessary to be redone. Because of this need, frequently have to perform the load flow, a research has begun to optimize the time needed for this task. A General-Purpose Graphic Processing Unit (GPGPU) as a cost-effective alternative to parallel architecture runs, which has a GPU not only for graphics purposes but also for general purposes. Several works were taken for the use of GPGPU in load flow calculations, there is no consensus on the content of the material, being in charge of each one of the work of its own method, making it difficult to use the architecture for an implementation of calculations, both for academic purposes and for the market. Due to the lack of consensus and differences found in the work, this dissertation aims to analyze the steps of the load flow, identifying which is more suitable to parallelize in GPGPU in order to perform simultaneous load flow calculations and reduces the time required for the processing, an efficient strategy for large scale systems in the market and not academic environment, facilitate the replication for future works using metaheuristics for optimization of power electrical systems.
|
280 |
A three-dimensional representation method for noisy point clouds based on growing self-organizing maps accelerated on GPUsOrts-Escolano, Sergio 21 January 2014 (has links)
The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.
|
Page generated in 0.0427 seconds