• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 60
  • 44
  • 28
  • 25
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 377
  • 55
  • 40
  • 37
  • 34
  • 31
  • 28
  • 26
  • 24
  • 24
  • 22
  • 21
  • 21
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Rot-free mixed finite elements for gradient elasticity at finite strains

Riesselmann, Johannes, Ketteler, Jonas W., Schedensack, Mira, Balzani, Daniel 05 June 2023 (has links)
Through enrichment of the elastic potential by the second-order gradient of deformation, gradient elasticity formulations are capable of taking nonlocal effects into account. Moreover, geometry-induced singularities, which may appear when using classical elasticity formulations, disappear due to the higher regularity of the solution. In this contribution, a mixed finite element discretization for finite strain gradient elasticity is investigated, in which instead of the displacements, the first-order gradient of the displacements is the solution variable. Thus, the C1 continuity condition of displacement-based finite elements for gradient elasticity is relaxed to C0. Contrary to existing mixed approaches, the proposed approach incorporates a rot-free constraint, through which the displacements are decoupled from the problem. This has the advantage of a reduction of the number of solution variables. Furthermore, the fulfillment of mathematical stability conditions is shown for the corresponding small strain setting. Numerical examples verify convergence in two and three dimensions and reveal a reduced computing cost compared to competitive formulations. Additionally, the gradient elasticity features of avoiding singularities and modeling size effects are demonstrated.
222

Defective proventriculus (Dve), a Novel Role in Dorsal-Ventral Patterning of the Drosophila Eye

Puli, Oorvashi Roy G. 26 August 2014 (has links)
No description available.
223

Automated 2D Detection and Localization of Construction Resources in Support of Automated Performance Assessment of Construction Operations

Memarzadeh, Milad 11 January 2013 (has links)
This study presents two computer vision based algorithms for automated 2D detection of construction workers and equipment from site video streams. The state-of-the-art research proposes semi-automated detection methods for tracking of construction workers and equipment. Considering the number of active equipment and workers on jobsites and their frequency of appearance in a camera's field of view, application of semi-automated techniques can be time-consuming. To address this limitation, two new algorithms based on Histograms of Oriented Gradients and Colors (HOG+C), 1) HOG+C sliding detection window technique, and 2) HOG+C deformable part-based model are proposed and their performance are compared to the state-of-the-art algorithm in computer vision community. Furthermore, a new comprehensive benchmark dataset containing over 8,000 annotated video frames including equipment and workers from different construction projects is introduced. This dataset contains a large range of pose, scale, background, illumination, and occlusion variation. The preliminary results with average performance accuracies of 100%, 92.02%, and 89.69% for workers, excavators, and dump trucks respectively, indicate the applicability of the proposed methods for automated activity analysis of workers and equipment from single video cameras. Unlike other state-of-the-art algorithms in automated resource tracking, these methods particularly detects idle resources and does not need manual or semi-automated initialization of the resource locations in 2D video frames. / Master of Science
224

Mean Flow Characteristics and Turbulent Structures of Turbulent Boundary Layers in Varying Pressure Gradients and Reynolds Numbers

Srivastava, Surabhi January 2023 (has links)
Turbulent boundary layers flowing over a smooth surface were studied to understand the influence of varying pressure gradients and flow Reynolds number on the boundary layer growth and mean turbulent properties. The test was conducted in the Virginia Tech Stability Wind Tunnel with a 0.914 m chord length, NACA 0012 Airfoil in the test section. This airfoil was rotated to different angles of attack to induce varying pressure gradients on the boundary layer developing on the test section walls. Mean pressure measurements, boundary layer pressure measurements, and time-resolved, wall-normal, stereoscopic particle image velocimetry (TR-PIV) measurements were made. The TR-PIV data was acquired at a chord-based Reynolds number of 1.2 million, 2 million, and 3.5 million, at a sampling rate of 1 kHz, in two different camera configurations. The boundary layer pressure measurements were acquired at different flow Reynolds numbers ranging between 0.76 million and 3.5 million. Both adverse and favorable pressure gradients of varying intensities were imposed on the boundary layer by rotating a 0.914 m chord NACA 0012 airfoil to angles of attacks between -{10}^o and {12}^o. Measurements at varying streamwise locations enabled the study of boundary layer flow development under changing pressure gradients. The pressure gradient influences were observed in the boundary layer characteristic properties, on the mean velocities, and on the Reynolds stresses present in the flow. The pressure gradient influences were found to be consistent at varying Reynolds numbers, but the intensity of their effects was influenced by the flow Reynolds number. Moreover, the influence of pressure gradients and flow Reynolds numbers was evident in both outer and inner scales. The test data acquired was also validated with previous works. / M.S. / The interaction of turbulent boundary layers and smooth surfaces is prevalent in our world. It plays a vital role in various phenomena, such as, aircraft stall, cabin noise, and structural vibrations. Varying flow conditions influence the behavior of boundary layers and the extent of their implications. The effects of pressure gradients and the level of turbulence, described by the Reynolds numbers, on turbulent boundary layer flow was studied. This was done through an experiment conducted at the Virginia Tech Stability Wind Tunnel facility. The test data was acquired through boundary layer pressure measurements and Time-Resolved, Stereoscopic Particle Image Velocimetry (TR-PIV) at varying streamwise locations in the test section. A 0.914 m chord, NACA 0012 airfoil was placed in the test section and its angle of attack was varied to -{10}^o,0^o,\ \ and\ {12}^o to induce a favorable, minimum, and an adverse pressure gradient, respectively. The TR-PIV measurements were acquired at a sampling rate of 1 kHz and in two different camera configurations. The flow Reynolds number was based on the airfoil chord length (Re_c) and was varied to 1.2 million, 2 million, and 3.5 million for the TR-PIV tests. The boundary layer pressure measurements were acquired using an array of 30 Pitot probes placed in the boundary layer of the flow. The flow Reynolds number for these test runs ranged between 0.76 million and 3.5 million. The acquired data was used to analyze the mean statistical properties of turbulent boundary layers primarily focusing on the mean velocities, boundary characteristic parameters, Reynolds normal stresses, and Reynolds shear stresses. The results showed that the nature of pressure gradient influences on the mean properties of turbulent boundary layers remained consistent regardless of the flow Reynolds number. However, the intensity of the pressure gradient effects was influenced by the flow Reynolds number. These observations were made at various streamwise data acquisition locations through which the evolution of the flow was also studied. Lastly, the results obtained in this experiment were validated with previous works.
225

Absorption of Sound : On the effects of field interaction on absorber performance

Färm, Anna January 2016 (has links)
Environmental noise has for decades been a well known problem, especially in urban areas. As noise requirements for vehicles are sharpened, noise reducing concepts are needed in early design stages requiring accurate simulations to support the design. Specifically for optimization of noise treatments, the absorber performance must be simulated correctly. So called noise encapsulations are placed below the powertrain on heavy vehicles to enclose the engine and reduce noise radiation. The attenuation of the absorbers on these shields must be represented correctly in simulations, even in environments with complex sound field, cooling flow and high temperature variations which may affect the absorber performance. This thesis studies the performance variation due to different absorber representations and due to these factors and how to include this in simulations. It is shown that the material representation significantly affects the attenuation performance in the simulations. Assuming locally reacting absorbers neglects the full interaction between the sound field and the material, which was shown to affect the noise reduction considerably. A measurement method to determine the angular dependent surface impedance was evaluated. It was shown sensitive to small samples and a method to improve accuracy was suggested. Including the angular dependence, either by full resolution or an angular dependent impedance, the field-absorber interaction is included in the simulations and more accurate results are obtained. The influence of flow and temperature fields on the absorber performance was also investigated. A method to include these effects was developed and the attenuation performance shown significant, especially for materials with bulk reaction. In conclusion, thorough knowledge of the material behavior and the field in the applications is required to choose appropriate material representation to enable reliable simulation results.​ / <p>QC 20160311</p>
226

Etude hydro‐mécanique et thermo‐mécanique du béton. Influence des gradients et des incompatibilités de déformation

De Sa, Caroline 17 December 2007 (has links) (PDF)
Lorsqu'une structure en béton est soumise à des sollicitations du type séchage ou hautes températures, différents mécanismes interviennent aux différentes échelles d'étude possibles de ce matériau, induisant le comportement global de la structure. Deux mécanismes sont ici distingués : les gradients (hydriques ou thermiques) à l'échelle macroscopique et les incompatibilités de déformations pâte de ciment/granulat à l'échelle mésoscopique. Les travaux présentés visent à déterminer l'effet de ces deux mécanismes. Les simulations réalisées sur le logiciel aux Eléments Finis Cast3M montrent ainsi l'apport d' "essais virtuels" en complément des expériences réelles pour permettre la séparation et la quantification des différents mécanismes intervenant dans la dégradation des propriétés mécaniques. Ces travaux s'appuient sur l'association des deux approches mésoscopique et macroscopique, utilisant deux maillages différents, homogène (considérant une phase unique, le béton) et hétérogène (considérant les deux phases pâte de ciment et granulats). L'influence du modèle mécanique adopté lors des simulations sur l'endommagement et la chute des propriétés mécaniques est également étudié.
227

Effect of charged species on the gradient properties

Ashraf, Kayesh 01 January 2017 (has links)
Surface chemical gradients are materials that exhibit continuous, gradually varying chemical or physical properties along and across the length of a substrate. As a result, each point on the gradient surface can represent an individual sample. They are broadly classified as chemical and physical gradients depending upon the properties that the gradient exhibits. A physical gradient involves a continuous variation of physical properties such as surface roughness and film porosity on the micrometer scale. Chemical gradients involve a gradual variation of chemical properties such as polarity, acidity and basicity, etc. Such gradients have found various applications in cell adhesion, nanoparticle absorption, etc. Because of the multitude of potential applications of acid-base gradient materials in separation science and biological applications, the main work of this dissertation work is focused on the preparation and fundamental, molecular level investigation of acid-base gradients on siloxane surfaces. In this work, we focused on the preparation and characterization of surface charge gradients. Charged gradients are gradients that contain charged functional groups that are spatially distributed along the length of the substrate. They can interact with each other or with other species in solution by electrostatic interactions. They can also play a key role in governing the interaction of macromolecules and bacteria on surfaces, the wetting of surfaces, the layer-by-layer (LBL) assembly of thin films, reactions in catalysis, and the separation of charged species in chromatography. Therefore, understanding localized interactions between surface functional groups and charged species in solution are particularly relevant to the development of surfaces resistant to biofouling, antimicrobial surfaces, catalytic surfaces, multi-layered composite thin films, and imprinted surfaces for chemical sensing and separations. Thus, it is of great of interest to develop methodologies to create and study heterogeneous and homogeneous charged surfaces with well-defined properties. There have been several different methods developed for the preparation of charged gradients. First a chemical gradient is prepared and then the chemical gradient is converted to charged gradient by a chemical approach. Silane-based methods for the preparation of chemical gradients are among those that are widely used because of the straightforwardness of the chemistry involved and also the availability of silanes with various chemical functionalities. A few of these silane based approaches such as the vapor-diffusion method and liquid diffusion method have been used for various applications so far. Most of these methods are only able to prepare surface chemical gradients for a specific application mainly because of their limitations in terms of gradient-length scale and chemistry involved. In this work, we used a procedure already developed in our lab to prepare chemical gradients from different functionalized alkoxysilanes; we call this procedure the ‘controlled-rate infusion method (CRI)’. This method can be adapted to different substrates and can form gradients at various length-scales, such as few hundred microns to tens of centimeters. The CRI method involves the infusion of an organoalkoxysilane solution into a container with a substrate mounted vertically so that time-dependent exposure along the substrate forms a gradient in chemical functionality from bottom to the top. The most important attribute of this method is that the local steepness of the gradient can be systematically controlled by simply changing the rate of infusion. The steepness of the gradient can also be changed at predefined positions along its length by programming the rate of infusion. CRI can also be used to prepare gradients containing multiple functionalities, termed multicomponent chemical gradients. The different chemical functionalities can be oriented in different directions to produce gradients where functionalities can be oriented along the same or opposed directions producing aligned and opposed multicomponent chemical gradients, respectively. In this work, the multicomponent gradients were converted to charge gradients via chemical reaction with 30% H2O2. Using controlled rate infusion and this technique, aligned or opposed multicomponent charge gradients containing NH3+, SO3- and SiO- groups were prepared. By infusing 3-aminopropyltriethoxysilane (APTEOS) and 3-mercaptopropyltriethoxysilane (MPTMOS) in the same or opposed direction, gradients containing charged species in different locations relative to each other along the length of the substrate were made. The gradient properties in each case were different and correlated to the way they were prepared i.e., where the gradients were oriented in an aligned or opposed fashion. Surface wettability and local surface charge, etc were found to be entirely different depending on the type of charge gradients (aligned and opposed). In another example, SiO- and NH3+ opposed gradients were prepared by infusing APTEOS on different base layers prepared from tetramethoxysilane (TMOS), phenyltrimethoxysilane (PTMOS), dimethyldimethoxysilane (DMDMOS) or octyltrimethoxysilane (OTMOS) followed by protonation of the surface amines. The gradient profiles and surface wettability were found to be independent of each other and dependent of the type of the base layer. In summary, this dissertation work focuses mainly on the preparation of multicomponent charge gradients and their molecular level characterization by a multitude of different analytical methods including XPS spectroscopy, tapping mode atomic force microscopy (TM-AFM), zeta potential measurement, and SCA and DCA measurements. CRI has incredible flexibility and adaptability, which was confirmed by extending it to different siloxane base films and creating gradients with different functionalities. Multicomponent charge gradients containing acid and base functionalities can be prepared and optimized for and acid base catalysis reactions such Michael addition as well as aldol, Henry, and Knoevenagel condensations.
228

Thermal adaptation along a latitudinal gradient in damselflies

Nilsson-Örtman, Viktor January 2012 (has links)
Understanding how temperature affects biological systems is a central question in ecology and evolutionary biology. Anthropogenic climate change adds urgency to this topic, as the demise or success of species under climate change is expected to depend on how temperature affects important aspects of organismal performance, such as growth, development, survival and reproduction. Rates of biological processes generally increase with increasing temperature up to some maximal temperature. Variation in the slope of the initial, rising phase has attracted considerable interest and forms the focus of this thesis. I explore variation in growth rate-temperature relationships over several levels of biological organization, both between and within species, over individuals’ lifetime, depending on the ecological context and in relation to important life history characteristics such as generation length and winter dormancy.       Specifically, I examine how a clade of temperate damselflies have adapted to their thermal environment along a 3,600 km long latitudinal transect spanning from Southern Spain to Northern Sweden. For each of six species, I sampled populations from close to the northern and southern range margin, as well from the center of the latitudinal range. I reared larvae in the laboratory at several temperatures in order to measure indiviudal growth rates. Very few studies of thermal adaptation have employed such an extensive sampling approach, and my finding reveal variation in temperature responses at several levels of organization.       My main finding was that temperature responses became steeper with increasing latitude, both between species but also between latitudinal populations of the same species. Additional genetic studies revealed that this trend was maintained despite strong gene flow. I highlight the need to use more refined characterizations of latitudinal temperature clines in order to explain these findings. I also show that species differ in their ability to acclimate to novel conditions during ontogeny, and propose that this may reflect a cost-benefit trade-off driven by whether seasonal transitions occur rapidly or gradually during ontogeny.       I also carried out a microcosm experiment, where two of the six species were reared either separately or together, to determine the interacting effects of temperature and competition on larval growth rates and population size structure. The results revealed that the effects of competition can be strong enough to completely overcome the rate-depressing effects of low temperatures. I also found that competition had stronger effects on the amount of variation in growth rates than on the average value.       In summary, my thesis offers several novel insights into how temperature affects biological systems, from individuals to populations and across species’ ranges. I also show how it is possible to refine our hypotheses about thermal adaptation by considering the interacting effects of ecology, life history and environmental variation.
229

Continuous Stationary Phase Gradients for Planar and Column Chromatography

Dewoolkar, Veeren 01 January 2016 (has links)
Surfaces that exhibit a gradual change in their chemical and/or physical properties are termed as surface gradients. Based on the changes in properties they are classified either as physical or chemical gradients. Chemical gradients show variations in properties like polarity, charge, functionality concentration and have found potential applications in fields of biology, physics, biosensing, catalysis and separation science. In this dissertation, surface gradients have been prepared using controlled rate infusion (CRI). CRI is a simple method in which a surface gradient is formed by carrying out the infusion of organoalkoxysilane in a time-dependent fashion using a set infusion rate. Depending on concentration of silane, rate of infusion and time of infusion, the gradient profiles on surfaces can be varied and the surface chemistry of the substrate can be altered. Initial work in the dissertation focuses on demonstrating different gradient profiles and selectivity obtained using amine and/ or phenyl functionalized gradient stationary phases on thin layer chromatography (TLC) plates prepared by CRI. The presence of amine and phenyl on the surfaces were confirmed by X-ray Photoelectron Spectroscopy (XPS) and diffuse reflectance spectroscopy, respectively. The change in surface chemistry was demonstrated by changes in the selectivities of water and fat soluble vitamins. After successful preparation and characterization of single and multi-component stationary phase gradients for planar chromatography, single-component gradients were prepared for column chromatography (Silica monolithic columns). Similar to that observed for planar chromatography, the selectivity was evaluated from retention factors and was found to be different for a weak acid/weak base mixture. The results obtained showed the promising approach of using gradient stationary phases in column chromatography. This work was further extended to prepare amine and phenyl multi-component gradients on silica monolithic columns to investigate mixed-mode and synergistic effects. Finally, amine, phenyl and thiol gradients were also prepared on cellulose substrates, particularly water color paper, The goal was to study the formation of functionality gradients on cellulose substrates particularly the interaction between hydroxyl groups on cellulose and silanols and to study the stability of the silanes on the cellulose surface.
230

Contrôle adaptatif et autoréglage : applications de l'approximation stochastique

Baltcheva, Irina January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.1846 seconds