• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mise au point d'une cellule de SOFC haute performance alimentée en méthane pur sans dépôt de carbone / Design of high performance SOFC fueled by pure methane without carbone deposition

Bailly, Nicolas 06 December 2012 (has links)
La mise au point d'une cellule de SOFC haute performance de configuration anode support pour un fonctionnement sous méthane pur nécessite l'élaboration d'un film mince d'électrolyte et le développement d'une architecture innovante permettant le reformage d'hydrocarbures. La première partie du travail a consisté en l'élaboration de films minces d'électrolyte de zircone stabilisée à l'oxyde d'yttrium par atomisation électrostatique sur un substrat composite poreux NiO-8YSZ. Cette technique originale a permis l'obtention de films minces, denses et étanches à partir d'une suspension, présentant des propriétés électriques comparables à celles d'un échantillon massif de même composition. La seconde partie du travail a porté sur la mise au point d'une cellule de SOFC optimisée dont l'architecture innovante intégrant une membrane anodique catalytique est basée sur le concept associant le reformage interne progressif et le découplage électro-catalytique. Une séquence d'élaboration établie spécifiquement conditionne l'assemblage des éléments optimisés de la cellule. L'adaptation de la cellule dans un banc de mesures a permis la réalisation de tests électrochimiques sous hydrogène et méthane à haute température. Le fonctionnement stable du dispositif pendant plus de 1000 h sous méthane pur avec un taux d'utilisation optimisé, sans apport extérieur d'eau et sans dépôt de carbone a validé le concept étudié. / The design of a high performance anode supported SOFC operating under pure methane requires the elaboration of a thin film of electrolyte and the development of an original architecture adapted to the reforming of hydrocarbons. The first part of this work was dedicated to the elaboration of yttria stabilized zirconia thin films of electrolyte by ESD onto a NiO-8YSZ porous substrate. This original technique has allowed the fabrication of thin, dense and gas-tight films starting from a suspension, with good electrical properties comparable to that of a bulk sample of the same nature. The second part of this work concerned the design of an optimized SOFC cell with an original architecture integrating an anodic catalytic membrane based on a concept gathering the gradual internal reforming and the electro-catalytic dissociation. The assembly of the optimized components is conditioned by an elaboration sequence specifically established. The adjustment of the cell in a test bench led to the achievement of electrochemical tests in hydrogen and methane at 800°C. The stable operating of the cell fueled by pure and dry methane with optimized faradaic efficiency for more than 1000 h without carbon deposition proved the viability of the studied concept.
2

Fabricação e testes de células a combustível de óxido sólido a etanol direto usando camada catalítica / Solid oxide fuel cells fabrication and operation running direct ethanol using a catalytic layer

Nobrega, Shayenne Diniz da 07 March 2013 (has links)
Células a combustível de óxido sólido suportadas no eletrólito de zircônia estabilizada com ítria (YSZ) foram fabricadas usando a técnica do recobrimento por rotação (spin-coating) para deposição de catodos de manganita de lantânio dopada com estrôncio (LSM) e anodos compósitos de níquel e YSZ (Ni-YSZ). Parâmetros microestruturais dos eletrodos, tais como espessura, tamanho médio de partículas e temperatura de sinterização foram otimizados, visando reduzir a resistência de polarização da célula e melhorar o seu desempenho. Estes estudos serviram de base para a fabricação de células com camada catalítica para uso com etanol direto. Sobre o anodo Ni-YSZ da célula foi depositada uma camada catalítica de céria dopada com gadolínia (CGO) com 0,1% em peso de irídio (Ir-CGO). A camada catalítica visa reformar o etanol antes do seu contato com o anodo Ni-YSZ, evitando o depósito de carbono na superfície do Ni que inviabiliza o uso de combustíveis primários contendo carbono nestas células a combustível. Inicialmente, a célula a combustível foi testada com etanol e as melhores condições de operação foram determinadas. Em seguida, as células unitárias foram testadas com etanol sem adição de água por períodos de tempo de até 390 horas. As células a combustível a etanol direto com camada catalítica operam no modo de reforma interna gradual, apresentando boa estabilidade e densidades de corrente similares às obtidas na operação com hidrogênio. Após a operação das células a combustível a etanol direto, análises de microscopia eletrônica de varredura mostraram que não houve formação significativa de depósitos de carbono na superfície do Ni, indicando que a camada catalítica de Ir-CGO foi efetiva para operação com o etanol. Testes de células a combustível a etanol direto sem a camada catalítica revelaram uma rápida degradação nas horas iniciais de operação com formação de grandes quantidades de depósitos de carbono identificados visualmente. Considerando-se a operação estável com etanol a seco por tempos relativamente longos de operação, os resultados alcançados representam um avanço significativo e apontam para o desenvolvimento de células a combustível a etanol direto usando-se os componentes tradicionais com a adição de uma camada catalítica. / Yttria-stabilized zirconia (YSZ) electrolyte supported solid oxide fuel cells were fabricated with spin-coated strontium-doped lanthanum manganite (LSM) cathodes and Ni-YSZ cermet anodes. The microstructural parameters of the electrodes such as thickness, average particle size, and sintering temperature were optimized to decrease the polarization resistance of the single cells and to improve their electrochemical performance. These preliminar studies provided the basis for the fabrication of single fuel cells with a catalytic layer of gadolinia-doped ceria (CGO) and 0.1 wt% iridium (Ir-CGO) deposited onto the anode. The catalytic layer aims at the stable operation with dry (direct) ethanol; it avoids the contact of the alcohol with the anode, preventing the anode degradation by carbon deposition. Initially, the single cells were tested with ethanol and optimized operating parameters were determined. Then, the single cells were operated with anhydrous ethanol for periods of time up to 390 hours. The single cells with catalytic layer operate by the gradual internal reforming of ethanol, with good stability and delivering similar electric current densities as the ones measured using hydrogen as fuel. After single cell operation on direct ethanol, scanning electron microscopy analyses identified no significant carbon deposition on the surface of Ni, indicating that the Ir-CGO catalytic layer was effective for the reforming of ethanol. Such results were compared to the ones of standard single cells operating on dry ethanol, which showed a fast degradation and the formation of large amounts of carbon deposits. Considering the rather stable performance of single cells running on dry ethanol for relatively long times, such results represent a significant advance towards the development of direct ethanol solid oxide fuel cells using the standard components and a catalytic layer.
3

Fabricação e testes de células a combustível de óxido sólido a etanol direto usando camada catalítica / Solid oxide fuel cells fabrication and operation running direct ethanol using a catalytic layer

Shayenne Diniz da Nobrega 07 March 2013 (has links)
Células a combustível de óxido sólido suportadas no eletrólito de zircônia estabilizada com ítria (YSZ) foram fabricadas usando a técnica do recobrimento por rotação (spin-coating) para deposição de catodos de manganita de lantânio dopada com estrôncio (LSM) e anodos compósitos de níquel e YSZ (Ni-YSZ). Parâmetros microestruturais dos eletrodos, tais como espessura, tamanho médio de partículas e temperatura de sinterização foram otimizados, visando reduzir a resistência de polarização da célula e melhorar o seu desempenho. Estes estudos serviram de base para a fabricação de células com camada catalítica para uso com etanol direto. Sobre o anodo Ni-YSZ da célula foi depositada uma camada catalítica de céria dopada com gadolínia (CGO) com 0,1% em peso de irídio (Ir-CGO). A camada catalítica visa reformar o etanol antes do seu contato com o anodo Ni-YSZ, evitando o depósito de carbono na superfície do Ni que inviabiliza o uso de combustíveis primários contendo carbono nestas células a combustível. Inicialmente, a célula a combustível foi testada com etanol e as melhores condições de operação foram determinadas. Em seguida, as células unitárias foram testadas com etanol sem adição de água por períodos de tempo de até 390 horas. As células a combustível a etanol direto com camada catalítica operam no modo de reforma interna gradual, apresentando boa estabilidade e densidades de corrente similares às obtidas na operação com hidrogênio. Após a operação das células a combustível a etanol direto, análises de microscopia eletrônica de varredura mostraram que não houve formação significativa de depósitos de carbono na superfície do Ni, indicando que a camada catalítica de Ir-CGO foi efetiva para operação com o etanol. Testes de células a combustível a etanol direto sem a camada catalítica revelaram uma rápida degradação nas horas iniciais de operação com formação de grandes quantidades de depósitos de carbono identificados visualmente. Considerando-se a operação estável com etanol a seco por tempos relativamente longos de operação, os resultados alcançados representam um avanço significativo e apontam para o desenvolvimento de células a combustível a etanol direto usando-se os componentes tradicionais com a adição de uma camada catalítica. / Yttria-stabilized zirconia (YSZ) electrolyte supported solid oxide fuel cells were fabricated with spin-coated strontium-doped lanthanum manganite (LSM) cathodes and Ni-YSZ cermet anodes. The microstructural parameters of the electrodes such as thickness, average particle size, and sintering temperature were optimized to decrease the polarization resistance of the single cells and to improve their electrochemical performance. These preliminar studies provided the basis for the fabrication of single fuel cells with a catalytic layer of gadolinia-doped ceria (CGO) and 0.1 wt% iridium (Ir-CGO) deposited onto the anode. The catalytic layer aims at the stable operation with dry (direct) ethanol; it avoids the contact of the alcohol with the anode, preventing the anode degradation by carbon deposition. Initially, the single cells were tested with ethanol and optimized operating parameters were determined. Then, the single cells were operated with anhydrous ethanol for periods of time up to 390 hours. The single cells with catalytic layer operate by the gradual internal reforming of ethanol, with good stability and delivering similar electric current densities as the ones measured using hydrogen as fuel. After single cell operation on direct ethanol, scanning electron microscopy analyses identified no significant carbon deposition on the surface of Ni, indicating that the Ir-CGO catalytic layer was effective for the reforming of ethanol. Such results were compared to the ones of standard single cells operating on dry ethanol, which showed a fast degradation and the formation of large amounts of carbon deposits. Considering the rather stable performance of single cells running on dry ethanol for relatively long times, such results represent a significant advance towards the development of direct ethanol solid oxide fuel cells using the standard components and a catalytic layer.

Page generated in 0.1528 seconds