• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 8
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 20
  • 18
  • 15
  • 15
  • 13
  • 10
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthesis and Interfacial Behavior of Functional Amphiphilic Graft Copolymers Prepared by Ring-opening Metathesis Polymerization

Breitenkamp, Kurt E. 01 February 2009 (has links)
This thesis describes the synthesis and application of a new series of amphiphilic graft copolymers with a hydrophobic polyolefin backbone and pendent hydrophilic poly(ethylene glycol) (PEG) grafts. These copolymers are synthesized by ruthenium benzylidene-catalyzed ring-opening metathesis polymerization (ROMP) of PEG-functionalized cyclic olefin macromonomers to afford polycyclooctene- graft -PEG (PCOE- g -PEG) copolymers with a number of tunable features, such as PEG graft density and length, crystallinity, and amphiphilicity. Macromonomers of this type were prepared first by coupling chemistry using commercially available PEG monomethyl ether derivatives and a carboxylic acid-functionalized cycloctene. In a second approach, macromonomers possessing a variety of PEG lengths were prepared by anionic polymerization of ethylene oxide initiated by cyclooctene alkoxide. This methodology affords a number of benefits compared to coupling chemistry including an expanded PEG molecular weight range, improved hydrolytic stability of the PEG-polycyclooctene linkage, and a reactive hydroxyl end-group functionality for optional attachment of biomolecules and probes. The amphiphilic nature of these graft copolymers was exploited in oil-water interfacial assembly, and the unsaturation present in the polycyclooctene backbone was utilized in covalent cross-linking reactions to afford hollow polymer capsules. In one approach, a bis -cyclooctene PEG derivative was synthesized and co-assembled with PCOE-g-PEG at the oil-water interface. Upon addition of a ruthenium benzylidene catalyst, a cross-linked polymer shell is formed through ring-opening cross-metathesis between the bis -cyclooctene cross-linker and the residual olefins in the graft copolymer. By incorporating a fluorescent-labeled cyclooctene into the graft copolymer, both oil-water interfacial segregation and effective cross-linking were confirmed using confocal laser scanning microscopy (CLSM). In a second approach, reactive functionality capable of chemical cross-linking was incorporated directly into the polymer backbone by synthesis and copolymerization of phenyl azide and acyl hydrazine-functional cyclooctene derivatives. Upon assembly, these reactive polymers were cross-linked by photolysis (in the phenyl azide case) or by addition of glutaraldehyde (in the acyl hydrazine case) to form mechanically robust polymer capsules with tunable degradability ( i.e. non-degradable or pH-dependent degradability). This process permits the preparation of both oil-in-water and water-in-oil capsules, thus enabling the encapsulation of hydrophobic or hydrophilic reagents in the capsule core. Furthermore, the assemblies can be sized from tens of microns to the 150 nm - 1 µm size range by either membrane extrusion or ultrasonication techniques. These novel capsules may be well-suited for a number of controlled release applications, where the transport of encapsulated compounds can be regulated by factors such as cross-link density, hydrolytic stability, and environmental triggers such as changes in pH.
32

Synthesis and characterization of urethane-acrylate graft copolymers

Alshuiref, Abubaker 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2006. / Polyurethanes (PUs) are finding increasing application and use in many industries due to their advantageous properties, such as a wide range of flexibility combined with toughness, high chemical resistance, excellent weatherability, and very low temperature cure. PUs do however have some disadvantages, for instance, PU is considered an expensive polymer, especially when considered for solvent based adhesives. A motivation for this study was to consider a largely unstudied area of PU chemistry by combining PUs with polyacrylates. Polyacrylates are well known adhesives and can carry specific functionality, but have the disadvantage that their flexible backbones impart limited thermal stability and mechanical strength. In this study PU was incorporated into acrylates in an effort to obtain acrylate-g-urethanes with good properties. The mode of incorporation chosen was urethane macromonomers (UMs), a hardly mentioned substance in literature, yet one deserving investigation. UMs having different urethane chain lengths (X) were synthesized by the polyaddition polymerization of toluene diisocyanate (TDI) and ethylene glycol (EG) by the prepolymer method, which was terminated by 2-hydroxy ethyl methacrylate (HEMA) and isopropanol. The UMs were characterized by Fourier-transform infrared spectroscopy (FTIR), proton NMR (1H NMR), carbon NMR (13C NMR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Various percentages of the respective UMs (0-40 wt % according to acrylate monomers) were then incorporated into methyl methacrylate (MMA) and into normal butyl methacrylate (n-BMA) backbones via solution free radical copolymerization. The resulting methyl methacrylate-urethane graft copolymers (PMMA-g-urethane) and normal butyl methacrylate-urethane graft copolymers (n-PBMA-g-urethane) were characterized by GPC, 1H NMR and 13C NMR, FTIR, TGA, and DMA. Phase separation between the urethane segment and acrylate segment in the yield of graft copolymerization products was investigated by DMA and transmission electron microscopy (TEM). As the concentration of the UMs in the free radical copolymerization feed increased, lower yields of both graft copolymers PMMA-g-urethane and n-PBMA-g-urethane were observed and more UM was incorporated into the PMMA and n-PBMA backbones. It also was found that the thermal stability of the PMMA-g-urethane and n-PBMA-gurethane copolymers increased with increasing UM concentration. DMA results showed that in most graft copolymer products the two respective component parts of PMMA-g-urethane or n-PBMA-g-urethane were completely compatible as only one Tg was observed. Two glass transitions, at temperatures of 22.0 and 76.0 oC, corresponding to the n-PBMA and urethane moieties, were observed when the chain length of the UMs was increased from X=4 to X=32 [the amount of this UM used in the copolymerization feed was increased to 40%, and microphase separation was indicated].
33

Synthesis and characterization of comb-polymers with controlled structure

Elhrari, Wael 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2006. / Synthesis of a series of poly (methylmethacrylate)-graft-poly (styrene) polymer was carried out via free radical polymerization of methylmethacrylate and polystyrene macromonomers. The macromonomers were synthesized via living anionic polymerization techniques. Two series of macromonomers where synthesized with different polymerizable end group functionalities, by termination with p-vinyl benzyl chloride and 3-(dimethyl chloro silyl) propyl methacrylate. The branch density was varied by controlling the composition feed ratio of the macromonomers to comonomer. Liquid chromatographic techniques were used to fully characterize the chemical composition and branch distributions of the graft polymer. Liquid chromatography under critical conditions of adsorption of styrene coupling with Fourier Transform Infrared Spectra was used to investigate the chemical composition and distribution of the branches in the graft. Physical properties of the graft copolymers such as Tg and free volume were determined using differential scanning calorimetry and positron lifetime spectrometry respectively. The relationship between the chemical composition and the graft copolymer properties such as Tg and free volume were investigated. The results show that for long chain macromonomers phase segregation occurs in the graft copolymers. In the case of shorter chain macromonomers at low content no phase segregation is observed and the macromonomers have an antiplasticization effect on the graft polymers.
34

RAFT-mediated synthesis of graft copolymers via a thiol-ene addition mechanism

Stegmann, Jacobus Christiaan 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The main objective of this project was the controlled synthesis of graft copolymers via a thiol-ene addition mechanism. The Reversible Addition-Fragmentation chain Transfer (RAFT) process was used in all polymerization reactions with the aim to achieve a certain degree of control over the molecular weight. Several synthetic steps were required in order to obtain the final graft copolymer and each step was investigated in detail. Firstly, two RAFT agents (cyanovaleric acid dithiobenzoate and dodecyl isobutyric acid trithiocarbonate) were synthesized to be used in the various polymerization reactions of styrene and butyl acrylate. This was done successfully and the RAFT agents were used to synthesize low molecular weight polystyrene branches of the graft copolymer. Different molecular weights were targeted. It was found that some retardation phenomena were present especially at high RAFT agent concentrations. The polystyrene branches that were synthesized contained RAFT end-groups. Various pathways were explored to modify these RAFT end-groups to form thiol end-groups to be used in the thiol-ene addition reaction during the grafting process. The use of sodium methoxide for this purpose proved most successful and no evidence of the formation of disulfide bridges due to the initially formed thiols was detected. Allyl methacrylate (AMA) was chosen as monomer to be used for the synthesis of the polymer backbone because it has two double bonds with different reactivities. For the first time, RAFT was used to polymerize AMA via the more reactive double bond to obtain linear poly(allyl methacrylate) (PAMA) chains with pendant double bonds. However, at higher conversions, gelation occurred and the molecular weight distributions were uncontrolled. NMR was successfully used to study the tacticity parameters of the final polymer. Finally, the synthesis of the graft copolymer, PAMA-g-polystyrene, was carried out by means of the “grafting onto” approach. The thiol-functionalized polystyrene branches were covalently attached to the pendant double bonds of the PAMA polymer backbone via a thiol-ene addition mechanism in the presence of a free radical initiator. A Multi- Angle Laser Light Scattering (MALLS) detector was utilized in conjunction with Size- Exclusion Chromatography (SEC) to obtain molecular weight data of the graft copolymer. The percentage grafting, as determined by 1H-NMR, was low. / AFRIKAANSE OPSOMMING: Die hoofdoel van hierdie projek is die beheerde sintese van ‘n entkopolimeer via ‘n merkaptaan-een addisiereaksie. Die sogenaamde “Reversible Addition-Fragmentation chain Transfer” (RAFT) proses is in al die polimerisasiereaksies gebruik met die doel om ‘n mate van beheer oor die molekulêre massa van die polimere te verkry. Verskeie stappe (waarvan elkeen ten volle ondersoek is) was nodig om die finale entkopolimeer te verkry. Eerstens is twee RAFT-agente (sianovaleriaansuur ditiobensoaat en dodekielisobottersuur tritiokarbonaat) gesintetiseer vir gebruik in verskeie polimerisasiereaksies van stireen en butielakrilaat. Hierdie stap was suksesvol en die RAFT-agente is toe gebruik vir die sintese van lae molekulêre massa polistireensytakke vir die entkopolimeer. Die molekulêre massas van die sytakke is gevarieer en daar is gevind dat vertragings in die polimerisasiereaksies voorgekom het, veral by hoë konsentrasies van die RAFT-agente. Die polistireensytakke wat gemaak is, besit almal ‘n RAFT-eindgroep. Verskeie roetes is bestudeer ten einde die RAFT-eindgroepe tot merkaptaan-eindgroepe te modifiseer om sodoende tydens ‘n merkaptaan-een addisiereaksie gebruik te word. Die gebruik van natriummetoksied was hier die suksesvolste en daar was geen teken van die vorming van disulfiedbrûe as gevolg van die oorspronklik gevormde merkaptane nie. Allielmetakrilaat (AMA) is gekies as die monomeer wat gebruik sou word vir die sintese van die polimeerruggraat omdat die monomeer twee dubbelbindings met verskillende reaktiwiteite besit het. Vir die eerste keer is RAFT gebruik vir die polimerisasie van AMA via die meer reaktiewe dubbelbinding om lineêre poli(allielmetakrilaat) (PAMA) kettings met dubbelbindings in die sygroepe te verkry. Gelvorming en onbeheerde molekulêre massaverspreiding het egter by hoër monomeeromsettings voorgekom. KMR is susksekvol gebruik om die taktisiteitsparameters van die finale polimeer te bestudeer. Ten slotte is die sintese van die entkopolimeer, PAMA-g-polistireen, uitgevoer deur die aanhegting van voorafgevormde sytakke. Die polistireensytakke met die merkaptaaneindgroepe is kovalent geheg aan die dubbelbindings in die sygroepe van die PAMA-polimeerruggraat via ‘n merkaptaan-een addisiemeganisme in die teenwoordigheid van ‘n vrye radikaalinisieerder. ‘n Kombinasie van gelpermeasiechromatografie en multi-hoeklaserligverstrooiing is gebruik om die molekulêre massa van die entkopolimeer te bepaal. Die persentasie sytakke soos bepaal deur 1H-KMR was laag.
35

Synthesis and characterisation of hybrid graft copolymers of polydimethylsiloxane and polymethylmethacrylate

Krugel, Gretha 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2007. / Hybrid graft copolymers of polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA) were synthesised. PDMS macromonomers were synthesised anionically from the cyclic D3 monomer. This living polymerisation was terminated with a [3- (methacryloxy)propyl]-dimethylchlorosilane terminating agent which resulted in the functionalised macromonomer. These PDMS macromonomers and MMA monomer were copolymerised to form PMMA-g-PDMS hybrid copolymers by conventional free radical reactions. Synthesised and commercial methacryloxy-functionalised PDMS macromonomers having a range of molar masses were copolymerised with MMA to form graft copolymers of various chemical compositions. PDMS content in the graft copolymers could be varied by the amount of PDMS incorporated into the copolymer as well as by varying the length of the PDMS side chains. Size exclusion chromatography (SEC) results confirmed low PDI’s for the PDMS macromonomers synthesised anionically. NMR studies allowed characterisation of the synthesised PDMS macromonomers and PMMA-g-PDMS copolymers. It also allowed the determination of relative ratios of PMMA:PDMS in the graft copolymers. Gradient elution chromatography (GEC) was used successfully to monitor the presence and removal of the PDMS macromonomer from the graft copolymer products. The influence of PDMS content of the graft copolymers on retention time was also evaluated using this technique. Two dimensional chromatography confirmed the formation of PMMA-g-PDMS copolymer as well as PMMA homopolymer during some of the grafting reactions. GEC in the first dimension was coupled to SEC in the second dimension. PAS-FTIR studies allowed chemical characterisation of the graft copolymer and confirmed surface segregation of the PDMS. Atomic force microscopy (AFM) was also used to study the surface segregation of PDMS and looked at the relationship between surface polarity and increasing PDMS content. The study showed the effect of thermal treatment on the surface morphology of the hybrid polymers. Corona treatment was used to modify the surface structure of the graft copolymer films. Contact angle studies provided evidence of hydrophobic loss and recovery after corona for the hybrid polymer materials containing PDMS. This is one of the first reported examples of hydrophobicity recovery in these types of hybrid materials after corona treatment. Slow positron beam studies highlighted the formation of a thin silica like layer on the surface of the films after corona similar to that observed for pure cross-linked PDMS compounds. The positron studies enabled estimation of the thickness of the silica like layer.
36

RAFT mediated polysaccharide copolymers

Fleet, Reda 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2006. / Cellulose, one of the most abundant organic substances on earth, is a linear polymer of D-glucose units joined through 1,4-β-linkages. Cellulose is however not easily processed without chemical modification. A number of techniques exist for the modification of cellulose, of which the viscose process is one of the most widely applied. Grafting of synthetic polymeric chains onto or from cellulosic materials is an useful technique that can be used to combine the strengths of synthetic and natural polymers dramatically, so changing the properties of cellulosic materials (pulp, regenerated cellulose, cellulose derivatives). In this study five model xanthate (Reversible Addition-Fragmentation chain Transfer (RAFT)/Macromolecular Design through Interchange of Xanthates (MADIX)) agents, namely, monofunctional, difunctional, trifunctional and tetrafunctional species of the form S=C(O-Z)-S-R, with different leaving groups and different activating moieties, were prepared and then studied to determine the feasibility of cellulose modification via addition fragmentation processes. These agents were characterized by Nuclear Magnetic Resonance spectroscopy (NMR), Fourier Transform Infrared spectroscopy (FT-IR) and Ultraviolet spectroscopy (UV). Polyvinyl acetates (PVAc) in the form of linear, three armed and four armed star shaped polymers were then successfully synthesized in reactions mediated by these xanthate RAFT/MADIX agents Xanthates were applied to polysaccharide materials using the viscose process (xanthate esters were formed directly on a cellulosic substrate, with subsequent alkylation) Grafting reactions were then conducted with the polysaccharides; cellulose was modified with vinyl acetate, [this is an example of a surface modification of natural polymers that is of interest in various industries, such as textiles and paper manufacture]. Analysis of the graft copolymers was conducted via Size Exclusion Chromatography (SEC), Liquid Adsorption Chromatography (LAC), Thermogravimetric Analysis (TGA), and FT-IR. Polyvinyl acetate was successfully grafted onto three polysaccharides (cellulosic materials), namely Hydroxyl Propyl Cellulose (HPC), Methyl Cellulose (MC) and cellulose. The study showed that the modification of cellulosic substrates with defined grafts of vinyl acetate can be easily achieved through minor modifications to existing industrial techniques.
37

Synthesis and characterization of graft and block copolymers using hydroboration

Baleg, Abd-Almonam 12 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2006. / Graft and block copolymers were synthesized using multifunctional and monofunctional macroinitiators to produce the copolymers. The process involved hydroboration of commercially available unsaturated rubbers and chain-end unsaturated macromonomers with 9-borabicyclo [3.3.1] nonane (9-BBN). The resulting secondary alkyl 9-BBN moieties in the starting materials were subsequently exposed to oxygen in the presence of free radical polymerizable monomers to facilitate the formation of graft and block copolymers. This research was initiated by first studying the hydroboration of a model compound, 2-hexene, in order to determine the optimal conditions for the graft reactions. The model compound was subsequently used as a macroinitiator to initiate the polymerization of methylmethacrylate (MMA). The same borane chemistry was extended to the synthesis of polystyrene (PS) block copolymers. Chain-end unsaturated PS macromonomers, synthesized by anionic polymerization, were effectively hydroborated and then polymerized to produce PS-b-PMMA block copolymers. The synthesis of polyolefin graft copolymers was subsequently achieved by hydroboration. Several commercial rubbers with different levels of unsaturated segments were efficiently grafted with vinyl monomers MMA and styrene (St) following the “graft from” approach. The grafted reactions were carried out under various reaction conditions to determine the effect of the following factors: concentration of oxygen, amount of borane and monomer concentration. By controlling these factors, different graft densities were achieved with high graft efficiencies. All reactions produced mixed products including unreacted (non-functional) macroinitiator, homopolymer, graft copolymer and in case of the highly unsaturated polymer a crosslinked gel. Finally, the chemical compositions as well as the molar mass distribution of the graft copolymers were fully characterized by different chromatographic techniques. 1H-NMR and FTIR were also used to confirm the structure of these copolymers. Gradient HPLC was developed and extensively used to characterize the graft copolymers.
38

Novel electrospun fibres of amphiphilic organic-inorganic graft copolymers of poly(acrylonitrile)-graftpoly( dimethylsiloxane) for silicone composite reinforcement

Bayley, Gareth Michael 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Novel silicone nanocomposites were prepared using poly(acrylonitrile) (PAN) based reinforcing fibres as well as multi-walled carbon nanotubes (MWCNTs). Compatibility of the fibre fillers with the silicone matrix required the synthesis of novel amphiphilic, organic–inorganic graft copolymers of PAN and poly(dimethylsiloxane) (PAN-g-PDMS). These fibre precursor materials were synthesised via the “grafting through” technique using conventional free radical copolymerisation. The PDMS macromonomer content in the feed was varied from 5 wt% to 25 wt% and the molecular weights of the macromonomer were 1000 g.mol-1 and 5000 g.mol-1. The solvent medium of the precipitation reaction was optimised at a volume ratio of 98% benzene to 2% dimethylformamide (DMF). Successful incorporation of PDMS yielded graft copolymer blend materials of PAN-g-PDMS, blended with PAN homopolymer and unreacted PDMS macromonomer. A gradient elution profile was developed to track the successful removal of the PDMS macromonomer via hexane extraction. The gradient profile showed that as the PDMS content in the feed increased, the number of graft molecules in the blend increased relative to the number of PAN homopolymer molecules. The crystallisability of the PAN segments was shown to decrease as the PDMS content increased. The synthesised polymer was used as precursor material for the electrospinning of fibre fillers. The electrospinning of the precursor material was successfully achieved using 100% DMF as electrospinning solution medium. The amphiphilic nature of the precursor material in DMF resulted in self-assembled aggregate structures in the electrospinning solution. An increasing PDMS content was shown to affect the aggregation of the precursor material, and resulted in an increase in the solution viscosity. The “gel-like” solutions limited the achievable fibre morphological control when altering conventional electrospinning parameters such as voltage, tip-to-collector distance, and solution concentrations. The rapid evaporation and stretching of the solution during electrospinning, combined with the phase segregated amphiphilic molecules in solution and the crystallisation of the PAN segments resulted in (non-equilibrium morphology) fully porous fibres. The crystallinity was shown to decrease after electrospinning of the fibre precursor materials. Successful incorporation of surface oxidised MWCNTs into the electrospun fibres was achieved. The content of nanotubes was varied from 2 wt% to 32 wt%. The MWCNTs reduced the mean fibre diameters by acting as cross-linkers between the PAN segments and increasing the solution conductivity. The nanotubes dispersed well throughout the porous structure of the fibres and aligned in the direction of the fibre axis. Fabrication of silicone composites containing nonwoven and aligned fibre mats (with 8 wt% MWCNTs in the fibres, and without) was successfully achieved. The compatibilisation of the PDMS surface segregated domains allowed excellent dispersion and interaction of the PAN based fibre fillers with the silicone matrix. Mechanical analysis showed improved properties as the PDMS content in the fibre increased. The highest PDMS content fibres did, however, exhibit decreased properties. This was ascribed to increased PDMS (soft and weak) content, decreased crystallinity and increased fibre diameter (lower interfacial area). Dramatic improvements in strength, stiffness, strain and toughness were achieved. The most significant result was an increase in strain of 470%. The mechanical results correlated with results of SEM analysis of the fracture surfaces. The dramatic improvements in properties were a result of the fibre strength and ductility, as well as the mechanism of composite failure. / AFRIKAANSE OPSOMMING: Nuwe silikonnanosamestellings is berei deur gebruik te maak van poli(akrilonitriel) (PAN) gebaseerde versterkende vesels wat multi-ommuurde koolstof nanobuisies bevat het. Versoenbaarheid van die vesels met die silikonmatriks het die sintese van nuwe amfifiliese, organies–anorganiese ent-kopolimere van PAN en poli(dimetielsiloksaan) (PAN-g-PDMS) benodig. Die vesel voorlopermateriaal is deur middel van ‘n “ent-deur” vryeradikaalkopolimerisasie gesintetiseer. Die inhoud van die PDMS makromonomeer in die reaksie het gewissel vanaf 5% tot 25%. Die gebruik van twee verskillende molekulêre massas makromonomere is bestudeer (1000 en 5000 g.mol-1). Die optimale oplosmiddelmengsel vir die neerslagreaksie was 'n volume verhouding van 98% benseen tot 2% dimetielformamied (DMF). Suksesvolle insluiting van PDMS het versnitmateriale van PAN-g-PDMS kopolimere gemeng met PAN homopolimere en ongereageerde PDMS makromonomere gelewer. 'n Gradiënteluering- chromatografiese profiel is ontwikkel om die suksesvolle verwydering van die PDMS makromonomere via heksaanekstraksie te bepaal. Die gradiëntprofiel het aangetoon dat indien die PDMS inhoud in die reagense verhoog is, die aantal entmolekules relatief tot PAN homopolimeermolekules ook verhoog het. 'n Toename in PDMS inhoud het egter 'n afname in kristallisasie van die PAN segmente tot gevolg gehad. Die gesintetiseerde polimeer is gebruik as die beginmateriaal vir die elektrospin van veselvullers. Die elektrospin van die beginmateriaal was suksesvol wanneer 100% DMF as elektrospinoplosmiddel gebruik is. Die amfifiliese aard van die beginmateriaal in DMF lei tot outokonstruksie van aggregaatstrukture in die elektrospinoplossing. Toenemende PDMS inhoud beïnvloed die outokonstruksie van die molekules in oplossing en het gelei tot 'n toename in die oplossings se viskositeit. Die "gelagtige" oplossings beperk die haalbare vesel se morfologiese beheerbaarheid wanneer konvensionele elektrospin parameters soos elektriese spanning, punt-tot-versamelaar afstand, en oplossingkonsentrasies gewysig word. Die vinnige verdamping en strek van die oplossing tydens elektrospin, gekombineer met die fase-geskeide amfifiliese molekules in oplossing en die kristallisasie van die PAN segmente, het gelei tot (nie-ewewig morfologie) volledige poreuse vesels. Die kristalliniteit van die veselbeginmaterial het afgeneem nadat elektrospin toegepas is. Die insluiting van die oppervlak-geoksideerde multi-ommuurde koolstof nanobuisies in die elektrogespinde vesels was suksesvol. Die inhoud van die nanobuisies het gewissel van 2 wt% tot 32 wt%. Die MWCNTs het die gemiddelde veseldeursnit verminder deur op te tree as kruisbinders tussen die PAN segmente van die molekules. Die nanobuisies was goed versprei deur die poreuse struktuur van die vesels en dit was gerig in die rigting van die vesel-as. Bereiding van die silikonsamestellings bestaande uit nie-geweefde en gerigte veseloppervlakke (met en sonder 8 wt% multi-ommuurde koolstof nanobuisies in die vesel) was suksesvol. Die versoenbaarheid tussen die oppervlak van die PDMS-geskeide gebiede en die silikonmatriks laat uitstekende verspreiding en interaksie van die PAN-gebaseerde veselvullers met die silikonmatriks toe. Meganiese analise het aangetoon dat die fisiese eienskappe verbeter het namate die PDMS inhoud in die vesel vermeerder het. Die vesels met die hoogste PDMS inhoud het egter verswakte eienskappe getoon. Dit is toegeskryf aan ‘n verhoogde PDMS inhoud (sag en swak), ‘n afname in kristalliniteit en ‘n verhoogde veseldeursnit (laer grensoppervlakke). Dramatiese verbeterings in sterkte, styfheid, verlengbaarheid, vervorming en taaiheid is bereik. Die mees betekenisvolle gevolg was 'n toename in die verrekking van 470%. Die meganiese resultate is gekorreleer met SEM ontleding van die brekingsoppervlakke. Die veselkrag en vervormbaarheid, sowel as die meganisme van die splyting van die samestellings, het tot die dramatiese verbeterings in die meganiese eienskappe gelei.
39

Synthesis and characterization of two novel urethane macromonomers and their methacrylic/urethane graft copolymers

Alshuiref, Abubaker 03 1900 (has links)
Thesis (PhD (Chemistry and Polymer Science))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Polymethacrylates are well known adhesives and can carry specific functionality, but have the disadvantage that their flexible backbones impart limited thermal stability and mechanical strength. Polyurethanes (PUs) are finding increasing application and use in many industries due to their advantageous properties, such as a wide range of flexibility combined with toughness, high chemical resistance and excellent weatherability. PUs do however have some disadvantages, for instance, PU is considered an expensive polymer, especially when considered for solvent based adhesives. the focus of this study was to consider a largely unstudied area of PU chemistry, namely combining PUs with polymethacrylates. Two types of linear urethane macromers (UMs) UM1 and UM2 were synthesized by the polyaddition polymerization of 4,4'-methylenediphenyl diisocyanate (MDI) with ethylene glycol (EG), and MDI with neopentylglycol (NPG), via a pre-polymer method, followed by termination with 2-hydroxy ethylacrylate (2-HEA) and methanol (MeOH) to yield UMs having specific urethane chain lengths, and which have to be predominantly monofunctional. Structural identification of the UMs was verified by MALDI-TOF-MS, FTIR, 13C-NMR and 1HNMR spectroscopy.Various percentages of the respective UMs (0_55 wt % of methacrylate monomers) were then incorporated into polymethyl methacrylate (PMMA) and poly n-butyl methacrylate (PnBMA) backbones via solution free-radical copolymerization. The resulting methyl methacrylate-g-urethane and n-butyl methacrylate-g-urethane copolymers were characterized by 1H-NMR,13C-NMR, FTIR, SEC with double detectors (UV and RI), light scattering, UV-Vis, HPLC, TGA, DSC, DMA and TEM. Weight percentages of UM incorporated into the methyl methacrylate-g-urethane copolymers were calculated using FTIR, UV-Vis and 1H-NMR techniques. Phase separation which occurred between the urethane segment and methacrylate segment in the graft copolymerization products was investigated by DMA, DSC and TEM analysis. Microphase separation occurred in all PMMA-g-UM1 and PnBMA-g-UM1 copolymers: two glass transitions temperatures corresponding to the PMMA or PnBMA and UM1 fractions, respectively, were observed. On the other hand, DMA and DSC results showed that in most graft copolymer products the two respective component parts PMMA-g-UM2 or PnBMA-g- UM2 were compatible, because only one Tg was observed. Two glass transitions occurred for PMMA or PnBMA and UM2 when the amount of UM was increased to 55 wt % during copolymerization and microphase separation was evident in DSC, DMA and TEM measurements. Thermal stability and storage modulus (stiffness) of all the synthesized PMMA-g-urethane and PnBMA-g-urethane copolymers increased as the concentration of urethane macromonomer in the copolymerization feed increased, as confirmed in TGA and DMA results. The surface and adhesive properties of the synthesized graft copolymer were studied by measuring the static contact angle and peel strength. Adhesion increased as the content of UMs increased in the graft copolymer. The graft copolymers prepared using a high UM2 feed for both PMMA and PnBMA showed improved in adhesion compared to the pure methacrylate polymers. The adhesion was better for both leather and for vinyl. / AFRIKAANSE OPSOMMING: Polimetakrilate is bekende kleefstowwe. Hulle het egter die tekortkoming dat hulle buigbare ruggraat beperkte termiese en meganiese stabliteit besit. Poliuretane (PUs) word deesdae al hoe meer gebruik in baie nywerhede as gevolg van hulle baie voordele, insluitend hul wye buigsaamheid tesame met sterkte, hoë chemiese weerstand en uitstekende weerbaarheid. PUs het egter ’n paar nadele: hulle is baie duur, veral wanneer hulle gebruik word in oplosmiddel-gebaseerde kleefstowwe. Die doel van hierdie studie is om die kombinering van PUs met polimetakrilate te bestudeer, 'n onderwerp wat tot dusver baie min aandag-getrek het. Twee tipes liniêre uretaanmakromere (UMs), UM1 en UM2, is gesintetiseer deur gebruik te maak van poliaddisiepolimerisasie van 4,4'-metileendifeniel diisosianaat (MDI) met etileenglikol (EG), en MDI met neopentielglikol (NPG), via ‘n prepolimeermetode, gevolg deur terminering met 2-hidroksiëtielakrilaat (2-HEA) en metanol (MeOH). Die produk hiervan is UMs met spesifieke kettinglengtes (hoofsaaklik monofunksioneel). Die samestelling van die UMs is met behulp van die volgende gevorderde analitiese tegnieke bepaal: MALDI-TOFMS, FTIR, 13C-NMR en 1H-NMR. Verskillende hoeveelhede van die UMs (0_55 gewIing% metakrilaatmonomere) is dan in die polimetielmetakrilaat (PMMA) en poli-n-butielmetakrilaat (PnBMA) ruggrate geïnkorporeer deur middel van oplossing-vryradikaalpolimerisasie. Die samestelling van die kopolimeerprodukte, metiel-metakrilaat-g-uretaan en n-butiel-metakrilaat-g-uretaan, is met behulp van die volgende gevorderde analitiese tegnieke bepaal: 1H-NMR, 13C-NMR, FTIR, SEC met dubbele detektors (UV en RI), ligverstrooiing UV-Vis, HPLC, TGA, DSC, DMA en TEM. Die hoeveelheid UM geïnkorporeer in die metielmetakrilaat-g-uretaan kopolimere is bereken deur gebruik te maak van FTIR, UV-Vis en 1H-NMR data. Die faseskeiding wat plaasgevind het tussen die uretaansegment en die metakrilaatsegment in die produkte van die entpolimerisasie is met behulp van DMA, DSC en TEM ondersoek. In alle PMMA-g-UM1 en PnBMA-g-UM1 kopolimere het mikrofaseskeiding plaasgevind: twee verskillende glasoorgangstemperature vir die PMMA of PnBMA en UM1 fraksies is waargeneem. Hierteenoor het DMA en DSC resultate getoon dat in die meeste entkopolimeerprodukte (PMMA-g-UM2 of PnBMA-g-UM2) was die twee komponente verenigbaar, aangesien net een Tg waargeneem is. In die geval van die kopolimere waar die hoeveelheid UM in die kopolimerisasiereaksies tot 55 gew% verhoog is, is twee glasoorgangstemperature vir PMMA of PnBMA, en UM2 waargeneem. Mikrofaseskeiding is met behulp van DSC, DMA en TEM bewys. Termiese stabiliteit en stoormodulus (styfheid) van alle gesintetiseerde PMMA-g uretaan en PnBMA-g-uretaan kopolimere het toegeneem namate die uretaankonsentrasie in die kopolimerisasiereaksie toegeneem het soos deur middel van TGA en DMA resultate bewys is. Die oppervlakte- en kleefeienskappe van die bereide entkopolimere is bestudeer deur die statiese-kontakhoek en skilkrag te meet. Adhesie het toegeneem namate die UMinhoud toegeneem het. Die entkopolimere berei met hoë PMMA en PnBMA inhoud het uiteindelik beter adhesie getoon as die suiwer metakrilaatpolimere. Die adhesie was beter vir beide leer en viniel.
40

Free volume of electrospun organic-inorganic copolymers

Basson, Neil 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Two series of amphiphilic, organic-inorganic graft copolymers of poly(methyl methacrylate) and poly(dimethylsiloxane) (PMMA-graft-PDMS), as well as poly(acrylonitrile) and poly(dimethylsiloxane) (PAN-graft-PDMS), were synthesized via conventional free radical copolymerization using the ―grafting through‖ technique. In both series the PDMS macromonomer content varied from 5 wt.% - 25 wt.% and different graft lengths of 1000 g/mol and 5000 g/mol were used. A gradient elution profile was developed to monitor the removal of the unreacted PDMS macromonomer using hexane extraction. In the case of the PAN copolymer series, the gradient profile showed that as the PDMS content in the feed increased, more PAN-graft-PDMS molecules formed relative to homopolymer PAN. In the case of the PMMA copolymer series, mostly PMMA-graft-PDMS molecules were formed as the PDMS content in the feed increased. In the case of the PAN-graft-PDMS series, the PDMS content affected the crystallization behaviour of the PAN segments and lead to a decrease in crystallinity across the composition range as the PDMS content increased. It is shown that the synthesized graft copolymers can be electrospun to produce continuous nanofibers. The effects of polymer solution concentration, copolymer composition and tip-to-collector distance on the fiber morphology are discussed. The rapid stretching of the polymer jet, as well as the rapid solvent evaporation during the electrospinning process, resulted in highly complex nonequilibrium morphologies in the case of the electrospun PAN-graft-PDMS copolymers. The crystallization behaviour of the electrospun fibers of PAN-graft- PDMS was shown to be different from the unprocessed precursor material. Surface oxidised MWCNTs were successfully incorporated and well dispersed into the graft copolymers via the electrospinning process to produce nanocomposite nanofibers. In the case of the PAN-graft-PDMS copolymer series, the presence of MWCNTs in the nanocomposite nanofibers enhanced the overall degree of crystallinity when compared to the unfilled nanofibers. For the first time positron annihilation lifetime spectroscopy (PALS) analysis was performed on the various complex graft copolymer compositions and their electrospun fiber analogues, as well as nanocomposites, to investigate the free volume properties of the various materials. The results revealed that there are two distinct ortho-positronium (o-Ps) lifetime parameters for these complex multiphased materials. The shorter lived lifetime -3 was attributed to the o-Ps annihilation in the amorphous regions of the crystalline PAN phase in the PAN-graft-PDMS copolymer series, as well as to the o-Ps annihilation in the amorphous PMMA phase in the case of the PMMA-graft-PDMS copolymer series. The longer lived lifetime -4 was attributed to the o-Ps annihilation in the more amorphous PDMS phase. In the case of the PMMA series the relative fractional free volume was influenced by the graft lengths, where the 5000 g/mol series showed a larger increase in fractional free volume relative to the shorter 1000 g/mol series. The effects of the tip-to-collector distance during electrospinning, as well as the inclusion of MWCNTs, on the free volume properties are also discussed. It is demonstrated how positron annihilation lifetime spectroscopy can provide valuable and unique information on the internal structure and morphology of the electrospun nanofibers. / AFRIKAANSE OPSOMMING: Twee reekse amfifiliese, organies-anorganiese entkopolimere van poli(metielmetakrilaat) en poli(dimetielsiloksaan) (PMMA-ent-PDMS), asook poli(akrilonitriel) en poli(dimetielsiloksaan) (PAN-ent-PDMS), is gesintetiseer deur konvensionele vrye-radikaalkopolimerisasie. Die PDMS makromonomeerinhoud het gewissel tussen 5 wt.% - 25 wt.% in albei reekse en sykettinglengtes van 1000 g/mol en 5000 g/mol is gebruik. `n Gradient-eluasieprofiel is opgestel om die verwydering van ongereageerde PDMS makromonomeer d.m.v. heksaanekstraksie te monitor. In die PAN kopolimeer reeks het die gradient-eluasieprofiel gewys dat meer PAN-ent- PDMS molekules vorm relatief tot die PAN homopolimeer sodra meer PDMS bygevoeg word. In die PMMA kopolimeer reeks het meer PMMA-ent-PDMS molekules gevorm sodra meer PDMS toegevoeg is. In die geval van die PAN-ent- PDMS reeks, het die PDMS die kristallisasiegedrag van die PAN segmente geaffekteer en `n afname in die totale kristalliniteit veroorsaak soos die PDMS inhoud vermeerder het. Daar word bewys dat die gesintetiseerde entkopolimere geelektrospin kan word om nanovesels te vorm. Die effek van polimeeroplossingskonsentrasie, kopolimeersamestelling en punt-tot-versamelaarafstand op die nanoveselmorfologie word bespreek. Die vinnige strekking van die polimeerjet sowel as die vinnige verdamping van die oplosmiddel gedurende die elektrospinproses het gelei tot hoogs komplekse nie-ekwilibrium morfologieë in die geval van die ge-elektrospinde PAN-ent-PDMS kopolimere. Die kristallisasiegedrag van die nanovesels van PAN-ent-PDMS het verskil van die onverwerkte voorloper materiaal. Oppervlakgeoksideerde MWCNTs is suksevol geïnkorporeer en versprei in die entkopolimere d.m.v. die elektrospinproses om nanosaamgestelde nanovesels te vorm. Die teenwoordigheid van MWCNTs in die nanosaamgestelde nanovesels in die PAN-ent-PDMS kopolimeerreeks het gelei tot `n verbetering in die algehele kristalliniteit in vergelyking met die nanovesels sonder MWCNTs. Positronvernietigingsleeftyd- spektroskopie (PALS) is vir die eerste keer gebruik om die vrye volume van verskillende kompleks entkopolimeersamestellings, hul ge-elektrospinde nanovesels sowel as nanosaamgestelde nanovesels te bestudeer. Die resultate het getoon dat daar twee verskillende orto-positronium (o-Ps) leeftydparameters vir hierdie komplekse multifase materiale bestaan. Die korter leeftydparameter -3 word toegeskryf aan die o-Ps vernietiging in die amorfe areas van die kristallyne PAN fase in die PAN-ent-PDMS kopolimeerreeks, sowel as die o-Ps vernietiging in die amorfe PMMA fase in die PMMA-ent-PDMS kopolimeerreeks. Die langer leeftydparameter -4 word toegeskryf aan die o-Ps vernietiging in die amorfe PDMS fase. Die relatief fraksionele vrye volume van die PMMA reeks is deur die verskillende syketting lengtes beïnvloed. Die 5000 g/mol syketting het `n groter toename in fraksionele vrye volume veroorsaak relatief tot die korter 1000 g/mol syketting. Die effek van die punttot- versamelaar-afstand tydens die elektrospinproses op die vrye volume eienskappe, sowel as die insluiting van MWCNTs, word bespreek. Daar word aangedui hoe positron-vernietigingsleeftyd-spektroskopie waardevolle en unieke inligting kan verskaf oor die interne struktuur en morfologie van die nanovesels.

Page generated in 0.0928 seconds