Spelling suggestions: "subject:"draft.""
301 |
Förekomst av arteriell insufficiens : och samband till postoperativa sårinfektioner i de nedre extremiteternabland patienter som opererats med Coronary Artery Bypass GraftBack, Victor, Rennerskog, Sebastian January 2010 (has links)
<p>The purpose of this study was to investigate the presence of arterial insufficiency in patients undergoing CABG surgery and whether arterial insufficiency is a risk factor for postoperative wound infections in the harvesting leg. Patients who had CABG surgery were enrolled consecutively. A total of 144 patients participated in the study. During their hospital stay demographic data was recorded, as well as pre-, intra-, and postoperative tests and risk factors. The patients answered a questionnaire regarding postoperative wound infections 30 days after surgery patients answered a questionnaire regarding infections. The known and potential risk factors that were recorded were BMI, HB, tobacco usage, diagnosed diabetes, hyperglycemia, duration of surgery, the lowest temperature during surgery and clinical or subclinical arterial insufficiency. The result showed that 34% had postoperative wound infections in the harvesting leg and 26 patients had an ABI (Ankel Brachial Index) indicating arterial insufficiency. There was no significant relationship between ABI and postoperative wound infections in the lower extremity in the total study group (p = 0.36) nor among men (p = 0.92). There was a significant correlation between ABI and postoperative wound infections in the lower extremity (p = 0.02) among women. The conclusion is that arterial insufficiency is more prevalent in women. The relationship between postoperative infections of the lower limbs and arterial insufficiency was significant for the participating women, but not in the total group nor among the men.</p>
|
302 |
The mechanism study of novel approaches to control chronic allograft rejection in rat orthotopic small bowel transplantationLi, Xiaosong, January 2006 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
303 |
Development of biosynthetic conduits for peripheral nerve repairMcGrath, Aleksandra January 2012 (has links)
Peripheral nerve injuries are often associated with significant loss of nervous tissue leading to poor restoration of function following repair of injured nerves. Although the injury gap could be bridged by autologous nerve graft, the limited access to donor material and additional morbidity such as loss of sensation and scarring have prompted a search for biosynthetic nerve transplants. The present thesis investigates the effects of a synthetic matrix BD™ PuraMatrix™ peptide (BD)hydrogel, alginate/fibronectin gel and fibrin glue combined with cultured rat Schwann cells or human bone marrow derived mesenchymal stem cells (MSC) on neuronal regeneration and muscle recovery after peripheral nerve injury in adult rats. In a sciatic nerve injury model, after 3 weeks postoperatively, the regenerating axons grew significantly longer distances within the conduits filled with BD hydrogel if compared with the alginate/fibronectin gel. The addition of rat Schwann cells to the BD hydrogel drastically increased regeneration distance with axons crossing the injury gap and entering into the distal nerve stump. However, at 16 weeks the number of regenerating spinal motoneurons was decreased to 49% and 31% in the BD hydrogel and alginate/fibronectin groups respectively. The recovery of the gastrocnemius muscle was also inferior in both experimental groups if compared with the nerve graft. The addition of the cultured Schwann cells did not further improve the regeneration of motoneurons and muscle recovery. The growth-promoting effects of the tubular conduits prepared from fibrin glue were also studied following repair of short and long peripheral nerve gaps. Retrograde neuronal labeling demonstrated that fibrin glue conduit promoted regeneration of 60% of injured sensory neurons and 52% of motoneurons when compared with the autologous nerve graft. The total number of myelinated axons in the distal nerve stump in the fibrin conduit group reached 86% of the nerve graft control and the weight of gastrocnemius and soleus muscles recovered to 82% and 89%, respectively. When a fibrin conduit was used to bridge a 20 mm sciatic nerve gap, the weight of gastrocnemius muscle reached only 43% of the nerve graft control. The morphology of the muscle showed a more atrophic appearance and the mean area and diameter of fast type fibres were significantly worse than those of the corresponding 10 mm gap group. In contrast, both gap sizes treated with nerve graft showed similar fiber size. The combination of fibrin conduit with human MSC and daily injections of cyclosporine A enhanced the distance of regeneration by four fold and the area occupied by regenerating axons by three fold at 3 weeks after nerve injury and repair. In addition, the treatment also significantly reduced the ED1 macrophage reaction. At 12 weeks after nerve injury the treatment with cyclosporine A alone or cyclosporine A combined with hMSC induced recovery of the muscle weight and the size of fast type fibres to the control levels of the nerve graft group. In summary, these results show that a BD hydrogel supplemented with rat Schwann cells can support the initial phase of neuronal regeneration across the conduit. The data also demonstrate an advantage of tubular fibrin conduits combined with human MSC to promote axonal regeneration and muscle recovery after peripheral nerve injury.
|
304 |
Use of Human Blood-Derived Endothelial Progenitor Cells to Improve the Performance of Vascular GraftsStroncek, John January 2011 (has links)
<p>Synthetic small diameter vascular grafts fail clinically due to thrombosis and intimal hyperplasia. The attachment of endothelial cells (ECs) onto the inner lumen of synthetic small diameter vascular grafts can improve graft patency; however, significant challenges remain that prevent wide clinical adoption. These issues include difficulties in the autologous sourcing of ECs, the lack of attachment, growth and retention of the layer of ECs to the graft lumen, and the maintenance of an anti-thrombotic and anti-inflammatory profile by the layer of ECs. </p><p>This dissertation describes the isolation, characterization, and use of endothelial progenitor cells (EPCs) to improve the performance of small diameter vascular grafts. First, EPC isolation efficiency and expression of critical EC markers was compared between young healthy volunteers and patients with documented coronary artery disease (CAD). EPCs were isolated and expanded from patients with CAD and had a similar phenotype to EPCs isolated from healthy donors, and a control population of human aortic ECs. Second, we assessed the ability to enhance the anti-thrombotic activity of patient derived EPCs through the over expression of thrombomodulin (TM). In vitro testing showed TM-transfected EPCs had significantly increased production of key anti-thrombotic molecules, reduced platelet adhesion, and extended clotting times over untransfected EPCs. Finally, native and TM-transfected EPCs were seeded onto small diameter vascular grafts and tested for their ability to improve graft performance. EPCs sodded onto the lumen of small diameter ePTFE vascular grafts had strong adhesion and remained adherent during graft clamping and exposure to flow. TM-transfected EPCs improved graft anti-thrombotic performance significantly over bare grafts and grafts seeded with native EPCs. Based on these promising in vitro results, grafts were implanted bilaterally into the femoral arteries of athymic rats. Bare grafts and grafts with air removed clotted and had only 25% patency at 7 days. In contrast, graft sodded with native EPCs or TM-transfected EPCs had 87% and 89% respective patency rates. High patency rates continued with 28 day implant testing with EPC sodded grafts (88% Native; 75% TM). There were no significant differences in patency rates at 7 or 28 days between native and TM-transfected grafts. These in vivo data suggest patient blood-derived EPCs can be used to improve the performance of small diameter vascular grafts.</p> / Dissertation
|
305 |
Characterization of a Degradable Polar Hydrophobic Ionic Polyurethane Using a Monocyte/Endothelial Cell Co-culture (in vitro) and a Subcutaneous Implant Mouse Model (in vivo)McDonald, Sarah M. 10 February 2011 (has links)
A degradable/polar/hydrophobic/ionic (D-PHI) polyurethane with properties intended to promote tissue regeneration in a small diameter peripheral artery vascular graft was evaluated for cell biocompatibility and growth. Films were cast in polypropylene 96 well plates for monocyte/endothelial cell (EC) co-culture in vitro studies and porous scaffold discs were implanted in an in vivo subcutaneous mouse model. After 7 days in culture the co-culture demonstrated cell adhesion and growth, low esterase activity (a measure of degradative potential and cell activation), no detectable release of pro-inflammatory cytokine (tumour necrosis factor -α) but measurable anti-inflammatory interleukin (IL)-10. The EC and the co-culture expressed the EC biomarker CD31, whereas the monocyte monoculture did not.
Cytokine array analysis of the in vivo characterization of D-PH supported an anti-inflammatory phenotype of cells at the site of the implant. Levels of IL-6 significantly decreased over time while IL-10 was significantly higher at 6 weeks post implant. TNF-α levels did not change significantly from 24 hours onwards, however the trend was towards lesser amounts following the initial time point. Histological analysis of the explanted scaffolds showed excellent tissue ingrowth and vascularization. A live/dead stain showed that the cells infiltrating the scaffolds were viable. Both the in vitro and in vivo results of this thesis indicate that D-PHI is a good candidate material for tissue engineering a peripheral artery vascular graft.
|
306 |
Computational Fluid Dynamics Modeling of Redundant Stent-graft Configurations in Endovascular Aneurysm RepairTse, Leonard 11 January 2011 (has links)
During endovascular aneurysm repair (EVAR), if the stent-graft device is too long for a given patient the redundant (extra) length adopts a convex configuration in the aneurysm. Based on clinical experience, we hypothesize that redundant stent-graft configurations increase the downward force acting on the device, thereby increasing the risk of device dislodgement and failure. This work numerically studies both steady-state and physiologic pulsatile blood flow in redundant stent-graft configurations. Computational fluid dynamics simulations predicted a peak downward displacement force for the zero-, moderate- and severe-redundancy configurations of 7.36, 7.44 and 7.81 N, respectively for steady-state flow; and 7.35, 7.41 and 7.85 N, respectively for physiologic pulsatile flow. These results suggest that redundant stent-graft configurations in EVAR do increase the downward force acting on the device, but the clinical consequence depends significantly on device-specific resistance to dislodgement.
|
307 |
Computational Fluid Dynamics Modeling of Redundant Stent-graft Configurations in Endovascular Aneurysm RepairTse, Leonard 11 January 2011 (has links)
During endovascular aneurysm repair (EVAR), if the stent-graft device is too long for a given patient the redundant (extra) length adopts a convex configuration in the aneurysm. Based on clinical experience, we hypothesize that redundant stent-graft configurations increase the downward force acting on the device, thereby increasing the risk of device dislodgement and failure. This work numerically studies both steady-state and physiologic pulsatile blood flow in redundant stent-graft configurations. Computational fluid dynamics simulations predicted a peak downward displacement force for the zero-, moderate- and severe-redundancy configurations of 7.36, 7.44 and 7.81 N, respectively for steady-state flow; and 7.35, 7.41 and 7.85 N, respectively for physiologic pulsatile flow. These results suggest that redundant stent-graft configurations in EVAR do increase the downward force acting on the device, but the clinical consequence depends significantly on device-specific resistance to dislodgement.
|
308 |
Characterization of a Degradable Polar Hydrophobic Ionic Polyurethane Using a Monocyte/Endothelial Cell Co-culture (in vitro) and a Subcutaneous Implant Mouse Model (in vivo)McDonald, Sarah M. 10 February 2011 (has links)
A degradable/polar/hydrophobic/ionic (D-PHI) polyurethane with properties intended to promote tissue regeneration in a small diameter peripheral artery vascular graft was evaluated for cell biocompatibility and growth. Films were cast in polypropylene 96 well plates for monocyte/endothelial cell (EC) co-culture in vitro studies and porous scaffold discs were implanted in an in vivo subcutaneous mouse model. After 7 days in culture the co-culture demonstrated cell adhesion and growth, low esterase activity (a measure of degradative potential and cell activation), no detectable release of pro-inflammatory cytokine (tumour necrosis factor -α) but measurable anti-inflammatory interleukin (IL)-10. The EC and the co-culture expressed the EC biomarker CD31, whereas the monocyte monoculture did not.
Cytokine array analysis of the in vivo characterization of D-PH supported an anti-inflammatory phenotype of cells at the site of the implant. Levels of IL-6 significantly decreased over time while IL-10 was significantly higher at 6 weeks post implant. TNF-α levels did not change significantly from 24 hours onwards, however the trend was towards lesser amounts following the initial time point. Histological analysis of the explanted scaffolds showed excellent tissue ingrowth and vascularization. A live/dead stain showed that the cells infiltrating the scaffolds were viable. Both the in vitro and in vivo results of this thesis indicate that D-PHI is a good candidate material for tissue engineering a peripheral artery vascular graft.
|
309 |
Grafted and Crosslinkable Polyphenyleneethynylene: Synthesis, Properties and Their ApplicationWang, Yiqing 28 November 2005 (has links)
This thesis presents the first reported grafted PPE - polycaprolactone-g-PPE; the first PPE based sensing model: biotinylated grafted PPE/streptavidin coated sphere; the first photocrosslinkable PPE ¨C allyloxy PPE; and the new mechanism which demonstrates morphology control on a single molecular level
|
310 |
Graft Copolymerization Of P-acryloyloxybenzoic Acid Onto PolypropyleneIsik, Buket 01 December 2006 (has links) (PDF)
Acryloyloxybenzoic acid (ABA) was prepared by the condensation reaction of acryloyl chloride with p-hydroxybenzoic acid in alkaline medium. The polymerization and grafting of ABA onto Polypropylene were anticipated to
occur simultaneously in melt mixing at high temperature. The monomer showed liquid crystalline property. For a better dispersion of ABA in PP before graft copolymerization, a masterbatch of 50-50 (by weight) low density polyethylene
+ ABA was prepared, which was then used for 5, 10, 15 % ABA + PP mixtures in the Brabender Plasti Corder. Furthermore, these compositions were reprocessed at the same temperature in the molten state.
Compression molding was used to prepare films for characterization experiments at 200 º / C under 15000 psi for approximately 3-5 minutes. The graft copolymers were characterized by several techniques / DSC, FTIR, MFI, SEM
and mechanical testing.
In DSC thermograms the crystallization of PP was seen at approximately 160º / C. An endothermic peak was also assigned to grafted PABA at 280º / C .
The incorporation of ABA onto the PP backbone as a graft copolymer (PABA-g-PP) at low percentages results in a possible rearrangement, where tensile strength values increased, while strain decreased. The grafting goes through
thermal radicalic mechanism.
MFI values were found to increase from 8.7 to 16.35 g/10 min at 10 wt % ABA, then decreased to 10.57 g/10 min at 15 wt % ABA. It is most likely that the presence of PABA produced easy orientational flow up to 10 % of ABA, but at 15 % ABA addition caused a slight decrease in MFI.
The tensile test specimens were analyzed by Scanning Electron Microscope. None of the three samples exhibited phase separation. This observation confirms that the graft copolymerization occurrs in a homogenous manner onto PP. The brittle nature of material is observed at all three compositions.
|
Page generated in 0.1247 seconds