• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of biosynthetic conduits for peripheral nerve repair

McGrath, Aleksandra January 2012 (has links)
Peripheral nerve injuries are often associated with significant loss of nervous tissue leading to poor restoration of function following repair of injured nerves. Although the injury gap could be bridged by autologous nerve graft, the limited access to donor material and additional morbidity such as loss of sensation and scarring have prompted a search for biosynthetic nerve transplants. The present thesis investigates the effects of a synthetic matrix BD™ PuraMatrix™ peptide (BD)hydrogel, alginate/fibronectin gel and fibrin glue combined with cultured rat Schwann cells or human bone marrow derived mesenchymal stem cells (MSC) on neuronal regeneration and muscle recovery after peripheral nerve injury in adult rats. In a sciatic nerve injury model, after 3 weeks postoperatively, the regenerating axons grew significantly longer distances within the conduits filled with BD hydrogel if compared with the alginate/fibronectin gel. The addition of rat Schwann cells to the BD hydrogel drastically increased regeneration distance with axons crossing the injury gap and entering into the distal nerve stump. However, at 16 weeks the number of regenerating spinal motoneurons was decreased to 49% and 31% in the BD hydrogel and alginate/fibronectin groups respectively. The recovery of the gastrocnemius muscle was also inferior in both experimental groups if compared with the nerve graft. The addition of the cultured Schwann cells did not further improve the regeneration of motoneurons and muscle recovery. The growth-promoting effects of the tubular conduits prepared from fibrin glue were also studied following repair of short and long peripheral nerve gaps. Retrograde neuronal labeling demonstrated that fibrin glue conduit promoted regeneration of 60% of injured sensory neurons and 52% of motoneurons when compared with the autologous nerve graft. The total number of myelinated axons in the distal nerve stump in the fibrin conduit group reached 86% of the nerve graft control and the weight of gastrocnemius and soleus muscles recovered to 82% and 89%, respectively. When a fibrin conduit was used to bridge a 20 mm sciatic nerve gap, the weight of gastrocnemius muscle reached only 43% of the nerve graft control. The morphology of the muscle showed a more atrophic appearance and the mean area and diameter of fast type fibres were significantly worse than those of the corresponding 10 mm gap group. In contrast, both gap sizes treated with nerve graft showed similar fiber size. The combination of fibrin conduit with human MSC and daily injections of cyclosporine A enhanced the distance of regeneration by four fold and the area occupied by regenerating axons by three fold at 3 weeks after nerve injury and repair. In addition, the treatment also significantly reduced the ED1 macrophage reaction. At 12 weeks after nerve injury the treatment with cyclosporine A alone or cyclosporine A combined with hMSC induced recovery of the muscle weight and the size of fast type fibres to the control levels of the nerve graft group. In summary, these results show that a BD hydrogel supplemented with rat Schwann cells can support the initial phase of neuronal regeneration across the conduit. The data also demonstrate an advantage of tubular fibrin conduits combined with human MSC to promote axonal regeneration and muscle recovery after peripheral nerve injury.
2

Langzeitstabilisierung der regenerierenden visuellen Bahn der Ratte (Rattus norvegicus)

Chiwitt, Carolin 16 November 2010 (has links) (PDF)
Durchtrennte Axone adulter retinaler Ganglienzellen (RGZ) können in periphere Nerventransplantate (PNT) einwachsen, die als “bypass” des distalen Sehnervenstumpfes verwendet werden. Das Transplantationsmodell, bei dem der durchtrennte Sehnerv durch ein Ischiasnervsegment ersetzt wird, ist in der Regenerationsforschung ein seit Jahren fest etabliertes Verfahren. In dieser Arbeit soll der Frage nachgegangen werden, ob a) der Ersatz des Sehnervs durch ein peripheres Nervensegment RGZ über einen langen Zeitraum hinweg morphologisch und funktionell stabilisiert, ob b) Unterschiede der Stabilisierung in Abhängigkeit von der Hirnregion, mit der das PNT in Kontakt tritt, zu beobachten sind und c) inwieweit regenerierende RGZ dadurch selbst peripher-nervöse Eigenschaften annehmen. Der Sehnerv adulter Ratten wurde zunächst komplett intraorbital durchtrennt. Der okuläre Stumpf wurde über ein autologes Ischiasnervsegment mit verschiedenen visuellen Zentren (Kortex, Mittelhirn) oder mit Fremdzielgebieten (z. B. Muskel) verbunden. Weitere Kontrollgruppen bestanden in der Quetschung des Sehnervs, der Durchtrennung ohne Transplantation und der Transplantation mit blind endendem Transplantat. Die Netzhautintegrität wurde pupillometrisch und elektroretinographisch regelmäßig überprüft, um eine eventuelle, funktionelle Wiederherstellung der visuellen Bahn zu erfassen. Nach einem, sechs und neun Monaten wurden die regenerierenden bzw. axotomierten oder gequetschten RGZ mit 4-(4-(didecylamino)styryl)-N-methylpyridinium (4-Di-10-ASP) retrograd markiert und morphometrisch quantifiziert (Fluoreszenz-, Konfokal- und Elektronenmikroskopie sowie Differentialinterferenzkontrast). Zusätzlich wurden immunhistochemische und anterograde Markierungsuntersuchungen durchgeführt. Regenerierende Ganglienzellen bleiben bis neun Monate nach der Transplantation am Nervus opticus stabil. Es gibt quantitative sowie morphometrisch erfassbare Unterschiede zwischen den experimentellen Gruppen und den Kontrollen, wobei die wieder verbundenen Ganglienzellen morphologisch am besten zu klassifizieren sind. Quantitativ zeigen die Retinae mit gequetschtem Sehnerv nach sechs Monaten die höchste Überlebensrate der RGZ. Die Effektivität dieses Verfahrens als Modell der zentralen Nervenläsion darf in Folge dieser Ergebnisse in Frage gestellt werden. Nach neun Monaten sind in den Retinae mit Rekonnektion zum Mittelhirn die meisten Ganglienzellen vorhanden. Elektrophysiologisch zeigen die Augen mit Verbindung zum Muskelgewebe die besten funktionellen Ergebnisse. Schlussfolgernd zeigt sich, dass adulte RGZ der Ratte über ein peripher-nervöses Transplantat, welches mit visuellen Zentren in Verbindung steht, über lange Zeit stabilisiert werden können.
3

Biosynthetic conduits and cell transplantation for neural repair

Pettersson, Jonas January 2011 (has links)
Spinal cord injury results in complete failure of the central neurons to regenerate and is associated with cyst formation and enlargement of the trauma zone. In contrast to the spinal cord, axons in the injured peripheral nerve have the capacity to undergo some spontaneous regeneration. However, significant post-traumatic loss of nervous tissue causing long nerve gap is one of the main reasons for the poor restoration of function following microsurgical repair of injured nerves. The present thesis investigates the effects of biodegradable conduits prepared from fibrin glue and poly-beta-hydroxybutyrate (PHB) in combination with cultured Schwann cells, mesenchymal stem cells and extracellular matrix molecules on regeneration after spinal cord and peripheral nerve injury in adult rats. At 4-8 weeks after transplantation into the injured spinal cord, the PHB conduit was well integrated into the cavity but regenerating axons were found mainly outside the PHB. When suspension of BrdU-labeled Schwann cells was added to the PHB, regenerating axons filled the conduit and became associated with the implanted cells. Modification of the PHB surface with extracellular matrix molecules significantly increased Schwann cell attachment and proliferation but did not alter axonal regeneration. To improve the labeling technique of the transplanted cells, the efficacy of fluorescent cell tracers Fast Blue, PKH26, Vibrant DiO and Cell Tracker™ Green CMFDA was evaluated. All tested dyes produced very efficient initial labeling of olfactory ensheathing glial cells in culture. The number of Fast Blue-labeled cells remained largely unchanged during the first 4 weeks whereas the number of cells labeled with other tracers was significantly reduced after 2 weeks. After transplantation into the spinal cord, Fast Blue-labeled glial cells survived for 8 weeks but demonstrated very limited migration from the injection sites. Additional immunostaining with glial and neuronal markers demonstrated transfer of the dye from the transplanted cells to the host tissue. In a sciatic nerve injury model, the extent of axonal regeneration through a 10mm gap bridged with tubular PHB conduit was compared with a fibrin glue conduit. At 2 weeks after injury, the fibrin conduit supported similar axonal regeneration and migration of the host Schwann cells compared with the PHB conduit augmented with a diluted fibrin matrix and GFP-labeled Schwann cells or mesenchymal stem cells. The long-term regenerative response was evaluated using retrograde neuronal labeling. The fibrin glue conduit promoted regeneration of 60% of sensory neurons and 52% of motoneurons when compared with the autologous nerve graft. The total number of myelinated axons in the distal nerve stump in the fibrin conduit group reached 86% of the nerve graft control and the weight of gastrocnemius and soleus muscles recovered to 82% and 89%, respectively. When a fibrin conduit was used to bridge a 20mm sciatic nerve gap, the weight of gastrocnemius muscle reached only 43% of the nerve graft control. The morphology of the muscle showed more chaotic appearance and the mean area and diameter of fast type fibers were significantly worse than those of the corresponding 10mm gap group. In contrast, both gap sizes treated with nerve graft showed similar fiber size. In summary, these results show that a PHB conduit promotes attachment, proliferation and survival of adult Schwann cells and supports marked axonal growth after transplantation into the injured spinal cord. The data suggest an advantage of the fibrin conduit for the important initial phase of peripheral nerve regeneration and demonstrate potential of the conduit to promote long-term neuronal regeneration and muscle recovery.
4

Langzeitstabilisierung der regenerierenden visuellen Bahn der Ratte (Rattus norvegicus)

Chiwitt, Carolin 05 October 2010 (has links)
Durchtrennte Axone adulter retinaler Ganglienzellen (RGZ) können in periphere Nerventransplantate (PNT) einwachsen, die als “bypass” des distalen Sehnervenstumpfes verwendet werden. Das Transplantationsmodell, bei dem der durchtrennte Sehnerv durch ein Ischiasnervsegment ersetzt wird, ist in der Regenerationsforschung ein seit Jahren fest etabliertes Verfahren. In dieser Arbeit soll der Frage nachgegangen werden, ob a) der Ersatz des Sehnervs durch ein peripheres Nervensegment RGZ über einen langen Zeitraum hinweg morphologisch und funktionell stabilisiert, ob b) Unterschiede der Stabilisierung in Abhängigkeit von der Hirnregion, mit der das PNT in Kontakt tritt, zu beobachten sind und c) inwieweit regenerierende RGZ dadurch selbst peripher-nervöse Eigenschaften annehmen. Der Sehnerv adulter Ratten wurde zunächst komplett intraorbital durchtrennt. Der okuläre Stumpf wurde über ein autologes Ischiasnervsegment mit verschiedenen visuellen Zentren (Kortex, Mittelhirn) oder mit Fremdzielgebieten (z. B. Muskel) verbunden. Weitere Kontrollgruppen bestanden in der Quetschung des Sehnervs, der Durchtrennung ohne Transplantation und der Transplantation mit blind endendem Transplantat. Die Netzhautintegrität wurde pupillometrisch und elektroretinographisch regelmäßig überprüft, um eine eventuelle, funktionelle Wiederherstellung der visuellen Bahn zu erfassen. Nach einem, sechs und neun Monaten wurden die regenerierenden bzw. axotomierten oder gequetschten RGZ mit 4-(4-(didecylamino)styryl)-N-methylpyridinium (4-Di-10-ASP) retrograd markiert und morphometrisch quantifiziert (Fluoreszenz-, Konfokal- und Elektronenmikroskopie sowie Differentialinterferenzkontrast). Zusätzlich wurden immunhistochemische und anterograde Markierungsuntersuchungen durchgeführt. Regenerierende Ganglienzellen bleiben bis neun Monate nach der Transplantation am Nervus opticus stabil. Es gibt quantitative sowie morphometrisch erfassbare Unterschiede zwischen den experimentellen Gruppen und den Kontrollen, wobei die wieder verbundenen Ganglienzellen morphologisch am besten zu klassifizieren sind. Quantitativ zeigen die Retinae mit gequetschtem Sehnerv nach sechs Monaten die höchste Überlebensrate der RGZ. Die Effektivität dieses Verfahrens als Modell der zentralen Nervenläsion darf in Folge dieser Ergebnisse in Frage gestellt werden. Nach neun Monaten sind in den Retinae mit Rekonnektion zum Mittelhirn die meisten Ganglienzellen vorhanden. Elektrophysiologisch zeigen die Augen mit Verbindung zum Muskelgewebe die besten funktionellen Ergebnisse. Schlussfolgernd zeigt sich, dass adulte RGZ der Ratte über ein peripher-nervöses Transplantat, welches mit visuellen Zentren in Verbindung steht, über lange Zeit stabilisiert werden können.
5

Commercialization of Epineural Conduits for Enhancement of Nerve Regeneration in Segmental Nerve Defects

Goodman, Bryce 27 August 2012 (has links)
No description available.
6

Neuroprotection and axonal regeneration after peripheral nerve injury

Welin, Dag, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010.
7

A functionalizable nerve graft design based on an organized electrospun silk fibroin nanofiber biomaterial for peripheral nerve regeneration / Un design d'une guide nerveuse fonctionnalisée basée sur un biomatériau des nanofibres de fibroïne de soie organisé par le procédé de l'électrofilage pour la régénération nerveuse dans le système nerveux périphérique

Belanger, Kayla Ann 06 November 2017 (has links)
Une lésion au niveau d’un nerf périphérique peut provoquer la perte de fonction sensorielle et motrice, et dans le cas de neurotmésis, la régénération spontanée ne se produira pas. De plus, si l’espace entre les deux segments de nerf est trop important, une suture directe n’est pas possible et l’implantation d’une greffe est nécessaire afin de créer une liaison entre les deux segments de nerf. L’autogreffe de nerf est le « gold standard » pour des procédés de réparation nerveuse : une portion d’un nerf sein (qui est considéré comme un nerf moins important) est prise du même patient et implantée au site de la lésion. Cependant, il existe plusieurs désavantages avec ce procédé comme une deuxième chirurgie, la perte de fonction au site du don, la possibilité de développer un neurome sur ce même site, ainsi qu’un taux de réussite de 50% dans les cas où l’espace entre les deux segments de nerf est très important. Il reste donc, un besoin de trouver un procédé alternatif afin d’augmenter le taux de réussite et d’éliminer les désavantages de l’autogreffe. L’objectif de cette étude est d’avancer vers une solution alternative de l’autogreffon en utilisant des biomatériaux. Cette thèse se divise en trois parties. La première se focalise sur le développement d’un modèle de guide nerveux basé sur des nanofibres de fibroïne de soie. Ce matériau est composé d’une organisation complexe qui inclut deux surfaces de nanofibres alignées avec une couche de nanofibres aléatoires à l’intérieur afin d’améliorer des propriétés mécaniques du matériau sans la perte d’orientation des fibres pour la régénération nerveuse. Le matériau est ensuite manipulé pour fabriquer un tube, multi-canaux avec une « enveloppe » supplémentaire afin de faciliter le procédé d’implantation chirurgicale. Ce guide nerveux a été soumis pour l’obtention d’un brevet européen le 12 juillet 2017 et cela est le sujet d’un deuxième article qui a été soumis pour publication. La deuxième partie de cette étude explore des possibilités d’une fonctionnalisation du matériau afin d’améliorer son efficacité pour la régénération nerveuse. Cette étude explore la fonctionnalisation de la fibroïne de soie avec une deuxième protéine, plusieurs facteurs de croissance, et des nanoparticules. Chacune de ces fonctionnalisations donne une possibilité d’ajouter des propriétés favorables à la fibroïne de soie, un matériau naturel et biocompatible. La troisième partie de cette étude examine l’efficacité d’un guide nerveux composé de la fibroïne de soie fonctionnalisée avec des facteurs de croissance pour la régénération nerveuse périphérique en comparaison avec un guide nerveux composé de la fibroïne de soie sans aucune fonctionnalisation et une suture direct (qui simule une autogreffe). Trois techniques d’évaluation différentes de la régénération nerveuse ont été réalisées afin d’obtenir une analyse plus complète. Il y a de nombreux mécanismes impliqués dans la régénération nerveuse, il est donc nécessaire d’étudier différents paramètres pour analyser l’efficacité de régénération. Les résultats d’analyses histologiques, d’électromyographie, et de capture de mouvement, ont été considérées ensemble afin d’arriver à une conclusion sur la réussite d’une régénération nerveuse pendant cette étude. Pour conclure cette étude, les guides nerveux fonctionnalisés avec une combinaison de facteurs de croissance démontrent une meilleure régénération nerveuse et une récupération de fonction supérieure. / Injury to a peripheral nerve can cause loss of sensory and motor function, and if the injury is very severe where the nerve undergoes neurotmesis, unassisted nerve regeneration may not occur. In this case, where the gap between nerve segments is too large to carry out a direct end to end suture, a graft is sutured to bridge the gap between sectioned nerve segments. The autologous nerve graft, where a portion of a less important nerve from the same patient is removed and grafted between nerve segments, continues to be the gold standard procedure for nerve repair. However, there are several drawbacks of this technique including a second surgical procedure, loss of function at the donor site, possibility of developing a painful neuroma at the donor site, and the 50% success rate of autografts used in large gaps. There is therefore a need for a tissue engineered nerve graft that can replace the autograft, and this study aims to advance toward an effective autograft alternative. This PhD is presented as a three part study consisting first of the development of a novel nerve guidance conduit based on a tri-layered silk fibroin nanofiber material comprised of a complex organization including two aligned fiber surfaces and a randomly deposited fiber interior to improve the mechanical properties of the material while not compromising the guidance capabilities of aligned nanofibers for nerve regeneration. The material is then used to fabricate a multi-channeled tube with an additional “jacket layer” in order to facilitate surgical implantation. This NGC has been submitted to be patented on July 12, 2017 and is the subject of the second article submitted for review for publication. The second part of this study explores the different possibilities of the functionalization of the material in order to improve the effectiveness for nerve regeneration. This study explores functionalizing the silk fibroin with a second protein, several growth factors, and nanoparticles that all have potential to add favorable properties to the natural biocompatible silk fibroin material. The final part of this study tests the effectiveness of growth factor-embedded silk fibroin NGCs for peripheral nerve regeneration in comparison with non-functionalized silk fibroin devices and a direct suture to simulate results obtained with an autograft. Three different techniques for the evaluation of nerve regeneration were used in order to produce a more comprehensive analysis. As there are many mechanisms involved in nerve regeneration, only one or two analysis techniques cannot paint a complete picture of the success of nerve regeneration. Therefore, histological analyses, electromyography analyses, and motion capture analyses were carried out and considered together in order to make a conclusion on the level of nerve regeneration success during this study. The conclusions from this study were that a NGC functionalized with a combination of growth factors appeared to exhibit the most successful nerve regeneration and functional recovery.

Page generated in 0.0641 seconds