• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un logiciel universel d'imagerie par spectrométrie de masse et application au modèle sangsue et aux maladies neurodégénératives / Development of an universal software for mass spectrometry imaging and apllication to the leech and to neurodegenerative diseases

Jardin-Mathé, Olivia 27 June 2008 (has links)
L'analyse directe de tissus par spectrométrie de masse MALDI est une approche en développement particulièrement importante pour l'analyse de biopsies. Elle offre l'intérêt de s'affranchir de l'extraction, de la purification et de la préparation des échantillons. De plus, elle permet d'obtenir la localisation de composés au sein du tissu puisque l'analyse est réalisée in situ par le balayage automatisé avec le faisceau laser conduisant à la création d'une matrice (intensité du signal vs coordonnées X/Y) qui pourra ensuite être visualisée sous forme d'image à l'aide d'un outil bioinformatique. Dans ce but, et en vue d'accéder aux données indépendamment du constructeur et de connaître les paramètres de calcul, le logiciel MITICS a été développé au cours de cette thèse. Pour illustrer son fonctionnement, nous avons comparé des études sur le protéome au niveau de l'embryon de sangsue médicinale et de l'adulte afin de rechercher des peptides présents chez l'embryon et se re-exprimant chez l'adulte lors de la régénération nerveuse. Ces travaux ont ensuite été confrontés aux études réalisées chez des animaux traités au 6-OHDA mimant la maladie de Parkinson. La recherche de biomarqueurs et la réalisation de carte moléculaire en liaison avec la pathologie devait également permettre la corrélation entre la présence de biomarqueurs issus de la réexpression d'éléments embryonnaires. Puis il fallait donner un nom aux peptides identifiés. Pour cela j'ai participé à l'annotation des EST du système nerveux de la sangsue médicinale grâce auxquels se fera à l'avenir la corrélation de l'image au nom de la biomolécule identifiée pour mieux appréhender sa fonction / Direct analysis of tissues by MALDI mass spectrometry is a growing approach, and very important especially conceming biopsy analysis. It offers the interest to avoid extraction, purification and preparation of the sample. Moreover it allows to get additional information by preserving composite localization in the tissue thanks to the analysis realized in situ by a laser beam scan. The automation ofthis scan enables creation ofa matrix (signal intensity versus X y coordinates); thus data conversion by bioinformatics' software is the keystone of this technology. Access to direct data, independently from the manufacturer, accessibility to computing parameters allowing the creation of the picture and transparency have been our priorities during the creation of our new imaging software: MITrCS. ln order to illustrate the efficiency of this pro gram, the survey of the medicinal leech embryos proteome versus medicinal leech adult proteome was undertaken in order to search peptides presents in the embryo that are re-expressed in the adult during nervous regeneration. This work on this invertebrate has next been compared to studies realized on 6hydroxydopamin-treated animaIs in order to simulate Parkinson disease. Research of biomarkers and achievement of a molecular map linked with the Parkinson pathology should allow a correlation between biomarkers from nervous regeneration. But identified peptides still needs to be named, so 1 participated to the annotation of medicinal leech nervous system EST. Thanks to these EST, it williater be possible with MITrCS to correlate the picture to the name of the identified biomolecule in order to better apprehend its function.
2

Etude biophysique de la régénération de neurones périphériques / Biophysical Study of Peripheral Neurons Regeneration

Benzina, Ouafa 30 January 2014 (has links)
Les pathologies du système somatosensoriel, appelées neuropathies sensitives périphériques, touchent environ 3 millions de personnes en France et causent des déficits sensoriels multiples. Parmi elles, les douleurs neuropathiques post traumatiques sont les plus fréquentes et sont souvent chroniques et résistantes aux traitements actuels. Une lésion nerveuse périphérique induit des réponses cellulaires permettant la survie et la régénération de ces neurones. Les ganglions rachidiens dorsaux (DRG) contiennent une variété de neurones sensitifs qui transmettent les stimuli somatiques. Suite à une blessure du nerf périphérique les neurones sensitifs s'adaptent à un nouvel environnement pour réussir leur élongation axonale. Parmi les mécanismes cellulaires conduisant à une croissance neuritique améliorée, il a été démontré qu'une lésion primaire in vivo du nerf augmente la régénération axonale suite à une deuxième lésion. In vitro, les neurones qui ont été conditionnés par le premier traumatisme montrent une croissance neuronale plus rapide et plus élonguée appelée croissance régénérative. L'élasticité est un paramètre déterminant des propriétés mécaniques de la membrane cellulaire. Elle donne des informations importantes sur la santé et la fonction de la cellule. Le microscope à force atomique (AFM) est devenu de nos jours un outil commun pour l'imagerie à haute résolution de matériaux biologiques puisque les cellules vivantes peuvent être imagées dans leurs conditions physiologiques. En plus du rôle des propriétés élastiques dans le processus de régénération, l'organisation structurale des tissus est en grande partie déterminante du degré et de la direction de croissance et du mouvement cellulaire. Le guidage de la croissance par la modification des surfaces ou « patterning » est possible avec la technique de « microcontact printing » qui permet la conception de circuits de protéines avec des géométries bien définies. Les protéines de la matrice extracellulaire. Dans la première partie de la thèse nous avons mis en évidence les propriétés mécaniques de la membrane de neurones sensitifs issus de DRG de souris adultes suite à une lésion du nerf sciatique gauche. Les neurones sensitifs conditionnés montrent un mode de croissance neuritique plus rapide et plus élonguée, moins de branchements neuritiques et plus de souplesse membranaire des somas et des cônes de croissance. Dans un deuxième volet du travail nous avons réussi à normaliser la pousse régénérative et l'activité électrique des neurones sensitifs et motoneurones spinaux en utilisant le patterning des protéines d'adhésion cellulaire (ECM) dans le but d'imiter la croissance longitudinale in vivo. / Peripheral nerve injuries lead to paralysis, anesthesia and lack of autonomic control of the affected body areas. The trauma results in loss of motor and sensory functions conveyed by the involved nerves. This process is referred to as Wallerian degeneration; it creates a microenviroment in the injury site that favors neurites regrowth. The increased intrinsic growth capacity of injured peripheral neurons is manifested experimentally by the conditioning lesion paradigm. Axotomy of a peripheral neuron previous to the test lesion, ‘‘primes'' the neuron, switches it on to a regenerative state and, thus, it will regenerate faster after receiving the second injury. Mechanical interactions play a key role in many processes associated with neuronal growth and development. Membrane cytoskeleton elasticity is a determining parameter of membrane mechanical properties and provides important information toward the health and function of the cell. For this reason the first objective of this thesis was to understand the conditioning injury effects on both morphology and rheological properties of live sensory neurons cell bodies and growth cones, using particularly the atomic force microscopy, and to correlate this to eventual modifications in the composition of the cytoskeletal proteins. In addition to the role of cell elastic properties and mechanical sensing in the regeneration process, the structural organization of tissues plays a major part in deciding the degree and direction of tissue growth and cell movement. The ability to guide cells and their outgrowth by modifying surfaces is possible with the microcontact printing technique which enables the design of protein pathways with experimentally defined geometries. Therefore, the second objective of the thesis was to modulate the regenerative growth of dorsal root ganglia sensory neurons and spinal motoneurons using cell adhesion proteins in order to physically mimic the in vivo longitudinal axonal growth. We used the extracellular matrix (ECM) proteins, ideal biomolecules for printing as they can guide in vitro the cellular adhesion, differentiation, migration. The patterning allowed us to normalize neurite elongation and electrical activity of sensory neurons before and after conditioning lesion.
3

Se trouver, se perdre, se retrouver : innervation des organes sensoriels de la ligne latérale / About finding and loosing : establishment of connectivity in the lateral line system

Schuster, Kevin 25 March 2011 (has links)
Dans cette thèse, je me suis intéressé aux mécanismes qui permettent aux axones des neurones sensoriels de trouver leurs organes cibles à une grande distance. Dans le cas du système de la ligne latérale postérieure (LLP) du poisson-zèbre, des organes sensoriels sont déposés au cours de la migration d'un primordium. Des neurites sensoriels accompagnent le primordium au cours de cette migration et sont ainsi guidés vers leurs organes cibles. J'ai démontré que l'inactivation du signal «Glial cell line-Derived Neurotrophic Factor » (GDNF) rend les axones sensoriels incapables de suivre le primordium. GDNF est également utilisé comme signal de guidage lors de la régénération axonale après section du nerf et donc permet aux axones de retrouver leur cible. Ensuite j'ai démontré que le signal « Brain Derived Neurotrophic Factor » (BDNF) exerce un autre rôle dans le développement de la LLP puisqu'il est essentiel pour l'ancrage et la connexion des axones à leurs organes cibles. Dans une deuxième partie, nous avons montré que le développement de la LLP embryonnaire du Thon Rouge est fortement similaire à celui du Poisson-Zèbre, pourtant relativement basal. Cette similitude comprend le fait que les axones de la LLP suivent le primordium. / In this thesis, I address the question of how peripheral axons of sensory neurons find their distant target organs. In the case of the posterior lateral line (PLL) system of zebrafish, sensory organs are deposited by a migrating primordium and sensory neurites accompany this primordium during its migration. In this way, the neurites are guided to their prospective target organs. I show that the inactivation of «Glial cell line Derived Neurotrophic Factor » (GDNF) signaling leads to the inability of sensory axons to track the migrating primordium. GDNF signaling is also used as a guidance cue during axonal regeneration following nerve cut. I conclude that GDNF is a major determinant of directed neuritic growth and of target finding in this system, and propose that GDNF acts by promoting local neurite outgrowth. Further, I demonstrate that «Brain Derived Neurotrophic Factor » (BDNF) signaling exerts another role in PLL development as it is essent ial to anchor and properly connect axons to their targets organs.In another project, we could demonstrate that the development of the embryonic PLL of the atlantic blue-fin tuna shows striking similarities to that of the relatively basal zebrafish, including that PLL axons follow the migrating primordium.
4

A functionalizable nerve graft design based on an organized electrospun silk fibroin nanofiber biomaterial for peripheral nerve regeneration / Un design d'une guide nerveuse fonctionnalisée basée sur un biomatériau des nanofibres de fibroïne de soie organisé par le procédé de l'électrofilage pour la régénération nerveuse dans le système nerveux périphérique

Belanger, Kayla Ann 06 November 2017 (has links)
Une lésion au niveau d’un nerf périphérique peut provoquer la perte de fonction sensorielle et motrice, et dans le cas de neurotmésis, la régénération spontanée ne se produira pas. De plus, si l’espace entre les deux segments de nerf est trop important, une suture directe n’est pas possible et l’implantation d’une greffe est nécessaire afin de créer une liaison entre les deux segments de nerf. L’autogreffe de nerf est le « gold standard » pour des procédés de réparation nerveuse : une portion d’un nerf sein (qui est considéré comme un nerf moins important) est prise du même patient et implantée au site de la lésion. Cependant, il existe plusieurs désavantages avec ce procédé comme une deuxième chirurgie, la perte de fonction au site du don, la possibilité de développer un neurome sur ce même site, ainsi qu’un taux de réussite de 50% dans les cas où l’espace entre les deux segments de nerf est très important. Il reste donc, un besoin de trouver un procédé alternatif afin d’augmenter le taux de réussite et d’éliminer les désavantages de l’autogreffe. L’objectif de cette étude est d’avancer vers une solution alternative de l’autogreffon en utilisant des biomatériaux. Cette thèse se divise en trois parties. La première se focalise sur le développement d’un modèle de guide nerveux basé sur des nanofibres de fibroïne de soie. Ce matériau est composé d’une organisation complexe qui inclut deux surfaces de nanofibres alignées avec une couche de nanofibres aléatoires à l’intérieur afin d’améliorer des propriétés mécaniques du matériau sans la perte d’orientation des fibres pour la régénération nerveuse. Le matériau est ensuite manipulé pour fabriquer un tube, multi-canaux avec une « enveloppe » supplémentaire afin de faciliter le procédé d’implantation chirurgicale. Ce guide nerveux a été soumis pour l’obtention d’un brevet européen le 12 juillet 2017 et cela est le sujet d’un deuxième article qui a été soumis pour publication. La deuxième partie de cette étude explore des possibilités d’une fonctionnalisation du matériau afin d’améliorer son efficacité pour la régénération nerveuse. Cette étude explore la fonctionnalisation de la fibroïne de soie avec une deuxième protéine, plusieurs facteurs de croissance, et des nanoparticules. Chacune de ces fonctionnalisations donne une possibilité d’ajouter des propriétés favorables à la fibroïne de soie, un matériau naturel et biocompatible. La troisième partie de cette étude examine l’efficacité d’un guide nerveux composé de la fibroïne de soie fonctionnalisée avec des facteurs de croissance pour la régénération nerveuse périphérique en comparaison avec un guide nerveux composé de la fibroïne de soie sans aucune fonctionnalisation et une suture direct (qui simule une autogreffe). Trois techniques d’évaluation différentes de la régénération nerveuse ont été réalisées afin d’obtenir une analyse plus complète. Il y a de nombreux mécanismes impliqués dans la régénération nerveuse, il est donc nécessaire d’étudier différents paramètres pour analyser l’efficacité de régénération. Les résultats d’analyses histologiques, d’électromyographie, et de capture de mouvement, ont été considérées ensemble afin d’arriver à une conclusion sur la réussite d’une régénération nerveuse pendant cette étude. Pour conclure cette étude, les guides nerveux fonctionnalisés avec une combinaison de facteurs de croissance démontrent une meilleure régénération nerveuse et une récupération de fonction supérieure. / Injury to a peripheral nerve can cause loss of sensory and motor function, and if the injury is very severe where the nerve undergoes neurotmesis, unassisted nerve regeneration may not occur. In this case, where the gap between nerve segments is too large to carry out a direct end to end suture, a graft is sutured to bridge the gap between sectioned nerve segments. The autologous nerve graft, where a portion of a less important nerve from the same patient is removed and grafted between nerve segments, continues to be the gold standard procedure for nerve repair. However, there are several drawbacks of this technique including a second surgical procedure, loss of function at the donor site, possibility of developing a painful neuroma at the donor site, and the 50% success rate of autografts used in large gaps. There is therefore a need for a tissue engineered nerve graft that can replace the autograft, and this study aims to advance toward an effective autograft alternative. This PhD is presented as a three part study consisting first of the development of a novel nerve guidance conduit based on a tri-layered silk fibroin nanofiber material comprised of a complex organization including two aligned fiber surfaces and a randomly deposited fiber interior to improve the mechanical properties of the material while not compromising the guidance capabilities of aligned nanofibers for nerve regeneration. The material is then used to fabricate a multi-channeled tube with an additional “jacket layer” in order to facilitate surgical implantation. This NGC has been submitted to be patented on July 12, 2017 and is the subject of the second article submitted for review for publication. The second part of this study explores the different possibilities of the functionalization of the material in order to improve the effectiveness for nerve regeneration. This study explores functionalizing the silk fibroin with a second protein, several growth factors, and nanoparticles that all have potential to add favorable properties to the natural biocompatible silk fibroin material. The final part of this study tests the effectiveness of growth factor-embedded silk fibroin NGCs for peripheral nerve regeneration in comparison with non-functionalized silk fibroin devices and a direct suture to simulate results obtained with an autograft. Three different techniques for the evaluation of nerve regeneration were used in order to produce a more comprehensive analysis. As there are many mechanisms involved in nerve regeneration, only one or two analysis techniques cannot paint a complete picture of the success of nerve regeneration. Therefore, histological analyses, electromyography analyses, and motion capture analyses were carried out and considered together in order to make a conclusion on the level of nerve regeneration success during this study. The conclusions from this study were that a NGC functionalized with a combination of growth factors appeared to exhibit the most successful nerve regeneration and functional recovery.
5

Prothèse nerveuse artificielle à partir de fibroïne de soie pour la réparation et la régénération de nerfs périphériques / Silk fibroin-based nerve conduits for peripheral nerve repair and regeneration

Dinis, Tony Mickael 17 October 2014 (has links)
La lésion de nerfs périphériques peut engendrer des déficits moteurs et/ou sensoriels permanents. En dépit des progrès techniques réalisés au cours de ces 25 dernières années, une récupération complète suite à ces lésions n’est pas encore possible aujourd'hui. L’autogreffe nerveuse, toujours considérée comme le standard clinique, est la seule technique capable d’offrir les meilleurs résultats en termes de récupération fonctionnelle. Cependant, la survenue de complications post-opératoires lors d’autogreffes d’un nerf et la quantité limitée de nerfs disponibles conduisent à mettre au point d’autres stratégies alternatives. Dans ce contexte, la mise au point de biomatériaux pour substituts nerveux devient une nécessité clinique. Malgré les efforts de la recherche, ces prothèses ne permettent toujours pas une régénération du nerf à la hauteur de l’autogreffe. Le biomatériau utilisé doit notamment présenter des propriétés physiques et chimiques proches de celui du nerf natif. La soie, aux propriétés mécaniques uniques, représente une bonne alternative pour mettre au point ce type de prothèses. En effet, la protéine de soie déjà utilisée dans le domaine biomédical est biocompatible. Les modifications chimiques de cette protéine améliore et favorise l’adhérence et la croissance cellulaires par l’incorporation de facteurs de croissance ou d’autres molécules d'intérêt. Ce travail de thèse propose de développer un nouveau type de biomatériau à base de soie fonctionnalisée par deux facteurs de croissance : le Nerve Growth Factor (NGF) et le Ciliary NeuroTrophic Factor (CNTF). Étant donné l’architecture complexe qui compose la structure nerveuse, une matrice supportant la repousse des tissus de façon orientée semble primordiale. Nous démontrons, dans un premier temps, le pouvoir de ces nanofibres alignées (produites par electrospinning) à orienter la régénération tissulaire de différents organes par culture d’explants. Les nanofibres de soie alignées, biocompatibles sont bio-activées par ajout de NGF spécifique de la régénération nerveuse. Cette matrice créée présente un gradient de concentration en NGF qui permet d’orienter la repousse axonale en stimulant la croissance axonale dans une seule direction. Afin d’optimiser la croissance de deux populations cellulaires, nous avons incorporé du CNTF pour produire des nanofibres bifonctionnalisées. Ces nanofibres bifonctionnalisées ont conduit à une longueur des neurites 3 fois plus grande à leurs contacts, stimulant la croissance des cellules gliales. Ainsi, nous avons produit des conduits nerveux à base de soie biofonctionnalisée pour implantation chez le rat. Les analyses physico-chimiques et les propriétés mécaniques démontrent le caractère biomimétique de nos tubes de guidage. Les premières études de la locomotion et l’observation de coupes du nerf sciatique de rat, suite à l’implantation de nos conduits donnent des résultats très prometteurs. L’ensemble de ces travaux démontre l’efficacité de nos guides nerveux à base de soie et les présente comme une alternative prometteuse à l’autogreffe nerveuse pratiquée en clinique. / Peripheral nerve injury causes sensory and/or motor functions deficits. Despite technological advances over the past 25 years, a complete recovery from these injuries remains unsatisfactory today. The autograft still considered the "gold standard" in clinical practice. This is the only technique able to offer complete functional recovery. However, the occurrence of postoperative complications in autologous nerve and the limited amount of available nerves lead to develop alternatives strategy.In this context, development of nerve graft substitutes becomes by far a clinical necessity. Despite research efforts, these artificial prostheses design based on biomaterial doesn’t allow nerve regeneration as found in autograft nerve procedures. The biomaterial used must have the physical and chemical properties similar to that of the native nerve. Silk, well known for its unique mechanical properties, proposes a good alternative to develop these prostheses. Indeed, the silk protein is commonly used in the biomedical field and regenerative medicine. This protein biocompatibility may be improved through chemical modifications to promote adhesion and cell growth by the incorporation of growth factors or other molecules of interest. Therefore, this thesis proposes to develop a new type of functionalized silk biomaterial based on two growth factors : Nerve Growth Factor (NGF) and Ciliary NeuroTrophic Factor (CNTF). Given the complex architecture that consists of nerve structure, a matrix which is able to support and manage the outgrowth of tissue becomes essential. We demonstrate the power of these aligned nanofibers (produced by electrospinning) to guide and manage tissue regeneration from different organ explants culture. Aligned silk nanofibers, were biocompatible and bio-activated by adding NGF involved for nerve regeneration. This matrix has been created with a concentration gradient of NGF to guide neuritis outgrowth in only one direction. The presence of this gradient demonstrated a better axonal growth in one direction versus the uniform concentration conditions. Nerve cells consist essentially of two cell populations which are neurons and Schwann cells. To optimize the culture and growth of these two populations, in addition to NGF, we incorporated CNTF to produce bifunctionalized nanofibers. These biofunctionalised nanofibers led to a length 3 times larger on contact with neurites. The glial cells growth, alignment and migration were stimulated by CNTF. Thus, we produced bi-functionalized nerve guidance conduits for rat implantation. The physico-chemical analyzes demonstrate the biomimetic of our guide tubes. Early studies of locomotion and observing histological sections of rat sciatic nerve, following the implementation of our conduits gave very promising results.These studies demonstrate the relevance of our nervous guides’ silk-based developed as an effective alternative to nerve autograft performed in the clinic.
6

Use of a novel peripheral nerve conduit to support sciatic nerve regeneration in an animal model

Lan Chun Yang, Timothy 06 1900 (has links)
Introduction : Les conduits nerveux synthétiques représentent une alternative chirurgicale aux autogreffes dans la réparation des traumatismes aux nerfs périphériques. Afin d’améliorer la régénération nerveuse périphérique, plusieurs biomatériels, tels que la multicouche polyélectrolyte de soie (MPE), et modèles ont été étudiés. Dans le cadre de ma maitrise, nos objectifs de recherche sont d’établir si la MPE de soie permet d’améliorer la régénération nerveuse périphérique in vivo et si notre nouveau modèle de conduit (« jelly roll ») peut mener à une meilleure régénération du nerf sciatique chez le rat que le modèle de conduit creux. Méthodes : Dans cette étude, une technique chirurgicale in vivo de lacération et de réparation du nerf sciatique chez le rat fut utilisé. Cinq conditions expérimentales de conduits (autogreffe, conduit creux avec et sans MPE de soie et « jelly roll » avec et sans MPE de soie) furent implantées (n= 2 rats par condition). Après 4 semaines, les conduits furent récupérés et marqués par immunohistochimie avec le neurofilament et la protéine basique de la myéline (MBP). La performance de chaque conduit fut évaluée par sa capacité à supporter l’excroissance axonale à travers le long du conduit et à travers la largeur de ce dernier à divers endroits. Résultats : Chaque condition expérimentale a supporté une régénération axonale avec différents degrés de succès. Globalement, l’autogreffe a supporté une plus longue croissance de fibres. De plus, la surface de fibres obtenue était plus large que les autres conditions. Les conduits avec la MPE de soie ont eu une performance similaire à leurs homologues sans soie. De plus, le modèle de conduit creux a mené à une meilleure régénération axonale que le modèle du « jelly roll ». Conclusion : L’autogreffe demeure le meilleur conduit pour supporter la régénération nerveuse périphérique. Les conduits avec la MPE de soie peuvent supporter une régénération nerveuse similaire aux conduits sans soie tandis que le modèle de « jelly roll » a généré des performances inférieures au modèle de conduit creux. / Background: Synthetic nerve conduits constitute alternative surgical options to autografts in the repair of peripheral nerve injuries. Silk polyelectrolyte multilayer (PEM) as a biomaterial and novel conduit designs have been proposed to improve peripheral nerve regeneration. In my master’s project, my objective is to assess whether silk PEM can improve peripheral nerve regeneration in vivo and to assess whether our novel conduit design (“jelly roll”) can better support rat sciatic nerve regeneration than a hollow conduit design. Methods: In this study, an in vivo rat model of sciatic nerve laceration and repair was used. Five experimental conduit conditions (autograft, hollow conduit with and without silk PEM, and jelly roll with and without silk PEM) were implanted (n=2 rats per condition). After 4 weeks, the conduits were harvested and immuno-stained for neurofilament and myelin basic protein (MBP). Conduit performance was assessed by its ability to support axonal outgrowth throughout the conduit’s length and at various locations along its width. Results: Each condition supported axonal regeneration at varying levels of success. Overall, the autograft group outperformed all other groups by supporting the longest and widest occupying regenerating fibers. Conduits with silk PEM performed similarly to conduits without silk PEM. In addition, the hollow conduit design demonstrated better regenerative outcomes than the jelly roll design. Conclusion: The autograft remains the superior conduit to support peripheral nerve regeneration. Conduits with silk PEM support nerve regeneration in the same capacity as non silk-coated conduits while the jelly roll design underperformed in comparison to the hollow conduit design.

Page generated in 0.1358 seconds